Volume 49 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHAO Z B,YANG Z W,LI Y,et al. Infrared radiation characteristics of carbon/glass hybrid composites under low-velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):177-186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0174
Citation: ZHAO Z B,YANG Z W,LI Y,et al. Infrared radiation characteristics of carbon/glass hybrid composites under low-velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):177-186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0174

Infrared radiation characteristics of carbon/glass hybrid composites under low-velocity impact

doi: 10.13700/j.bh.1001-5965.2021.0174
Funds:  National Natural Science Foundation of China (52075541,52005495); China Postdoctoral Science Foundation (2019M650262); Natural Science Foundation of Shaanxi Province (2020JM-354)
More Information
  • Corresponding author: E-mail:yangzhengwei1136@163.com
  • Received Date: 06 Apr 2021
  • Accepted Date: 23 Jul 2021
  • Available Online: 16 Jan 2023
  • Publish Date: 30 Jul 2021
  • Carbon/glass hybrid composites have shown great potential in industrial applications. The infrared radiation characteristics of carbon/glass hybrid composite laminates and two types of non-hybrid composites under low velocity impact were studied experimentally by infrared thermography. The damage mode of the laminates was determined after impact by visual, ultrasonic C-scan and optical microscopy, and then the time series variation and temperature distribution characteristics of the thermal map sequence were analyzed to characterize the heat dissipation effect during the impact. Results show that the infrared thermography is highly suitable for monitoring the damage process of fiber reinforced composites under low velocity impact, and that the relationship between the monitoring characteristics and the damage modes can be established through the thermal map sequence. It is also found that the interlaminar hybrid of carbon glass fibers can effectively improve the anti-delamination ability of carbon fiber reinforced polymer (CFRP) composites. With the increase of impact energy, the anti-delamination ability becomes more obvious. After impact, carbon glass hybrid composites show both larger surface damage and smaller delamination damage with better damage tolerance.

     

  • loading
  • [1]
    GHORI S W, SIAKENG R, RASHEED M, et al. The role of advanced polymer materials in aerospace[C]//Sustainable Composites for Aerospace Applications. Amsterdam: Elsevier, 2018: 19-34.
    [2]
    ZHOU J, LIAO B, SHI Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates[J]. Composites Part B:Engineering, 2019, 161: 300-313. doi: 10.1016/j.compositesb.2018.10.090
    [3]
    JAGANNATHA T D, HARISH G. Mechanical properties of carbon/glass fiber reinforced epoxy hybrid polymer composites[J]. International Journal of Mechanical Engineering and Robotics Research, 2015, 4(2): 131-137.
    [4]
    CHEN D D, LUO Q T, MENG M Z, et al. Low velocity impact behavior of interlayer hybrid composite laminates with carbon/glass/basalt fibres[J]. Composites Part B:Engineering, 2019, 176: 107191. doi: 10.1016/j.compositesb.2019.107191
    [5]
    PAPA I, BOCCARUSSO L, LANGELLA A, et al. Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests[J]. Composite Structures, 2020, 232: 111571. doi: 10.1016/j.compstruct.2019.111571
    [6]
    SAFRI S N A, SULTAN M T H, JAWAID M, et al. Impact behaviour of hybrid composites for structural applications: A review[J]. Composites Part B:Engineering, 2018, 133: 112-121. doi: 10.1016/j.compositesb.2017.09.008
    [7]
    NAIK N K, RAMASIMHA R, ARYA H, et al. Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates[J]. Composites Part B:Engineering, 2001, 32(7): 565-574. doi: 10.1016/S1359-8368(01)00036-1
    [8]
    管清宇, 冯剑飞, 夏品奇, 等. 复合材料层压板低速冲击行为及剩余拉伸强度[J]. 北京航空航天大学学报, 2021, 47(6): 1220-1232. doi: 10.13700/j.bh.1001-5965.2020.0132

    GUAN Q Y, FENG J F, XIA P Q, et al. Low-velocity impact behavior and residual tensile strength of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1220-1232(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0132
    [9]
    ZHOU J, LIAO B, SHI Y, et al. Experimental investigation of the double impact position effect on the mechanical behavior of lowvelocity impact in CFRP laminates[J]. Composites Part B:Engineering, 2020, 193: 108020. doi: 10.1016/j.compositesb.2020.108020
    [10]
    张超, 方鑫, 刘建春. 复合材料层板冰雹高速冲击损伤预测及失效分析[J]. 北京航空航天大学学报, 2022, 48(4): 698-707.

    ZHANG C, FANG X, LIU J C. Damage prediction and failure mechanism of composite laminates under high-velocity hailstone impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 698-707(in Chinese).
    [11]
    LOGANATHAN T M, SULTAN M T H, MUHAMMAD AMIR S M, et al. Infrared thermographic and ultrasonic inspection of randomly-oriented short-natural fiber-reinforced polymeric composites[J]. Frontiers in Materials, 2021, 7: 604459. doi: 10.3389/fmats.2020.604459
    [12]
    DOSHVARPASSAND S, WU C Z, WANG X Y. An overview of corrosion defect characterization using active infrared thermography[J]. Infrared Physics & Technology, 2019, 96: 366-389.
    [13]
    ALFREDO OSORNIO-RIOS R, ANTONINO-DAVIU J A, DE JESUS ROMERO-TRONCOSO R. Recent industrial applications of infrared thermography: A review[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 615-625. doi: 10.1109/TII.2018.2884738
    [14]
    VAVILOV V, BURLEIGH D. Infrared thermography and thermal nondestructive testing[M]. Cham: Springer International Publishing, 2020: 7-11.
    [15]
    BAGAVATHIAPPAN S, LAHIRI B B, SARAVANAN T, et al. Infrared thermography for condition monitoring: A review[J]. Infrared Physics & Technology, 2013, 60: 35-55.
    [16]
    KRSTULOVIC-OPARA L, KLARIN B, NEVES P, et al. Thermal imaging and thermoelastic stress analysis of impact damage of composite materials[J]. Engineering Failure Analysis, 2011, 18(2): 713-719. doi: 10.1016/j.engfailanal.2010.11.010
    [17]
    JAKUBCZAK P, BIENIAŚ J, SUROWSKA B. Impact damage live-time analysis of modern composite materials using thermography[J]. Composites Theory and Practice, 2014, 14: 219-223.
    [18]
    MEOLA C, CARLOMAGNO G M. Impact damage in GFRP: New insights with infrared thermography[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(12): 1839-1847. doi: 10.1016/j.compositesa.2010.09.002
    [19]
    MEOLA C, BOCCARDI S, CARLOMAGNO G M, et al. Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics[J]. Composite Structures, 2015, 134: 845-853. doi: 10.1016/j.compstruct.2015.08.119
    [20]
    MEOLA C, BOCCARDI S, BOFFA N D, et al. New perspectives on impact damaging of thermoset-and thermoplastic-matrix composites from thermographic images[J]. Composite Structures, 2016, 152: 746-754. doi: 10.1016/j.compstruct.2016.05.083
    [21]
    MEOLA C, BOCCARDI S, CARLOMAGNO G M, et al. Impact damaging of composites through online monitoring and non-destructive evaluation with infrared thermography[J]. NDT & E International, 2017, 85: 34-42.
    [22]
    MEOLA C, BOCCARDI S, CARLOMAGNO G M. Infrared thermography for inline monitoring of glass/epoxy under impact and quasi-static bending[J]. Applied Sciences, 2018, 8(2): 301. doi: 10.3390/app8020301
    [23]
    BOCCARDI S, CARLOMAGNO G M, SIMEOLI G, et al. Evaluation of impact-affected areas of glass fibre thermoplastic composites from thermographic images[J]. Measurement Science and Technology, 2016, 27(7): 075602. doi: 10.1088/0957-0233/27/7/075602
    [24]
    BOCCARDI S, BOFFA N D, CARLOMAGNO G M, et al. Inline monitoring of basalt-based composites under impact tests[J]. Composite Structures, 2019, 210: 152-158. doi: 10.1016/j.compstruct.2018.11.038
    [25]
    BOCCARDI S, CARLOMAGNO G M, BOFFA N D, et al. Infrared thermography to locate impact damage in thin and thicker carbon/epoxy panels[J]. Polymer Engineering & Science, 2017, 57(7): 657-664.
    [26]
    MAIERHOFER C, KRANKENHAGEN R, RÖLLIG M. Application of thermographic testing for the characterization of impact damage during and after impact load[J]. Composites Part B:Engineering, 2019, 173: 106899. doi: 10.1016/j.compositesb.2019.106899
    [27]
    ASTM Committee. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M-12[S]. West Conshohocken: [s.n.], 2015: 1-16.
    [28]
    RICHARDSON M O W, WISHEART M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A:Applied Science and Manufacturing, 1996, 27(12): 1123-1131. doi: 10.1016/1359-835X(96)00074-7
    [29]
    KANG T J, KIM C. Impact energy absorption mechanism of largely deformable composites with different reinforcing structures[J]. Fibers and Polymers, 2000, 1(1): 45-54. doi: 10.1007/BF02874876
    [30]
    BIOT M A. Thermoelasticity and irreversible thermodynamics[J]. Journal of Applied Physics, 1956, 27(3): 240-253. doi: 10.1063/1.1722351
    [31]
    MEOLA C, CARLOMAGNO G M. Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects[J]. International Journal of Impact Engineering, 2014, 67: 1-11. doi: 10.1016/j.ijimpeng.2013.12.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(218) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return