Volume 49 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHANG Q S,LIU T T,ZHAO Z H. Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):17-22 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0212
Citation: ZHANG Q S,LIU T T,ZHAO Z H. Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):17-22 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0212

Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery

doi: 10.13700/j.bh.1001-5965.2021.0212
Funds:  Key Program of the Joint Fund for Civil Aviation Research with National Natural Science Foundation of China (U2033204)
More Information
  • Corresponding author: E-mail:nkzqsong@126.com
  • Received Date: 23 Apr 2021
  • Accepted Date: 23 May 2021
  • Available Online: 16 Jan 2023
  • Publish Date: 16 Jul 2021
  • In order to quantify the effect of thermal runaway gas produced in the thermal runaway process of lithium-ionbattery on thermal runaway propagation, based on the energy conservation equation and the equivalent substitution method, this paper presents a method to calculate the contribution of thermal runaway gas combustion to thermal runaway propagation. The self-designed experimental platform of thermal runaway gas energy release calculation was used to pick the commercial 18650 battery and collect the parameters required for the calculation. According to the experiment results, the energy released during the combustion of the first cell’s thermal runaway gas accounts for 5.42% of the energy needed by the second cell’s thermal runaway, resulting in a 42% increase in the second cell’s self-heat production and a 29% reduction in thermal runaway time. The research results are helpful to further explore the energy transfer efficiency in the process of runaway heat transfer, and provide theoretical support for cell level and system level battery safety design.

     

  • loading
  • [1]
    芮新宇, 冯旭宁, 韩雪冰, 等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4): 193-201. doi: 10.3969/j.issn.1008-7923.2020.04.005

    RUI X Y, FENG X N, HAN X B, et al. Review on the thermal runaway propagation of lithium-ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 193-201(in Chinese). doi: 10.3969/j.issn.1008-7923.2020.04.005
    [2]
    张青松, 罗星娜, 程相静, 等. 基于锂离子电池温降指数的细水雾添加剂筛选方法[J]. 北京航空航天大学学报, 2020, 46(6): 1073-1079. doi: 10.13700/j.bh.1001-5965.2019.0362

    ZHANG Q S, LUO X N, CHENG X J, et al. Method for screening fine water mist additive based on temperature drop index of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1073-1079(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0362
    [3]
    张磊, 张春颖, 黄昊, 等. 三元锂电池过充诱导燃烧特性的试验研究[J]. 消防科学与技术, 2021, 40(2): 157-159. doi: 10.3969/j.issn.1009-0029.2021.02.001

    ZHANG L, ZHANG C Y, HUANG H, et al. Experimental study on the combustion characteristics of ternary lithium battery by overcharge[J]. Fire Science and Technology, 2021, 40(2): 157-159(in Chinese). doi: 10.3969/j.issn.1009-0029.2021.02.001
    [4]
    张磊, 黄昊, 张永丰, 等. 锂电池穿刺燃烧特性及其抑制技术研究[J]. 消防科学与技术, 2020, 39(4): 526-528. doi: 10.3969/j.issn.1009-0029.2020.04.028

    ZHANG L, HUANG H, ZHANG Y F, et al. Study on combustion characteristics and suppression technology of lithium batteries by puncture[J]. Fire Science and Technology, 2020, 39(4): 526-528(in Chinese). doi: 10.3969/j.issn.1009-0029.2020.04.028
    [5]
    张青松, 曹文杰, 罗星娜, 等. 基于多米诺效应的锂离子电池热释放速率分析方法[J]. 北京航空航天大学学报, 2017, 43(5): 902-907. doi: 10.13700/j.bh.1001-5965.2016.0383

    ZHANG Q S, CAO W J, LUO X N, et al. Analysis method of heat release rate of lithium-ion battery based on Domino effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 902-907(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0383
    [6]
    FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. doi: 10.1016/j.joule.2020.02.010
    [7]
    ROTH E P, DOUGHTY D H, FRANKLIN J, et al. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders[J]. Journal of Power Sources, 2004, 134(2): 222-234. doi: 10.1016/j.jpowsour.2004.03.074
    [8]
    JHU C Y, WANG Y W, SHU C M, et al. Thermal explosion hazards on 18650 lithium-ion batteries with a VSP2 adiabatic calorimeter[J]. Journal of Hazardous Materials, 2011, 192(1): 99-107.
    [9]
    JHU C Y, WANG Y W, WEN C Y, et al. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries[J]. Journal of Thermal Analysis and Calorimetry, 2011, 106(1): 159-163. doi: 10.1007/s10973-011-1452-6
    [10]
    JHU C Y, WANG Y W, WEN C Y, et al. Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3) O2 batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100: 127-131.
    [11]
    WEN C Y, JHU C Y, WANG Y W, et al. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2[J]. Journal of Thermal Analysis and Calorimetry, 2012, 109(3): 1297-1302. doi: 10.1007/s10973-012-2573-2
    [12]
    LIU X, STOLIAROV S I, DENLINGER M, et al. Comprehensive calorimetry of the thermally-induced failure of a lithium-ion battery[J]. Journal of Power Sources, 2015, 280: 516-525. doi: 10.1016/j.jpowsour.2015.01.125
    [13]
    LIU X, WU Z, STOLIAROV S I, et al. Heat release during thermally-induced failure of a lithium-ion battery: Impact of cathode composition[J]. Fire Safety Journal, 2016, 85: 10-22. doi: 10.1016/j.firesaf.2016.08.001
    [14]
    SAID A O, LEE C, STOLIAROV S I, et al. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium-ion cell arrays[J]. Applied Energy, 2019, 248: 415-428. doi: 10.1016/j.apenergy.2019.04.141
    [15]
    SAID A O, LEE C, STOLIAROV S I, et al. Experimental investigation of cascading failure in 18650 lithium-ion cell arrays: Impact of cathode chemistry[J]. Journal of Power Sources, 2020, 446: 227347.
    [16]
    FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium-ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. doi: 10.1016/j.jpowsour.2014.11.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views(539) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return