Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0223
Citation: HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0223

Unsteady flow characteristics of turbine rotor passage under rim seal effect

doi: 10.13700/j.bh.1001-5965.2021.0223
Funds:  Tianjin Education Commission Scientific Research Program (2018KJ240); Civil Aviation University of China Postgraduate Research and Innovation Project (10502728); National Natural Science Foundation of China (U1833108); 2020 Virtual Simulation Laboratory Construction Project of Civil Aviation University of China (XF2020006)
More Information
  • Corresponding author: E-mail:bc_li@cauc.edu.cn
  • Received Date: 06 May 2021
  • Accepted Date: 27 Aug 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 03 Sep 2021
  • In order to study the influence of the rim seal between the turbine wheelspace on the downstream rotor passage, numerical simulations were performed on the flow field distribution and aerodynamic loss in the turbine rotor passage when unsealed cavity, unsealed air flow and different purge flow rates were employed. The research results show that the airflow at the exit of the sealed cavity is affected by the relative position change of the stator and the rotor, showing a strong unsteady characteristic, and the change is consistent with the motion period of the rotor. The unsteady fluctuation of the inlet position of the rotor is affected by the purge flow and the leading edge potential field. The purge flow causes circumferential and radial velocity changes as well as a strong unsteady effect. The deflection of the main flow in the end wall caused by the purge flow in the rotor passage changes the stagnation point of the horseshoe vortex on the leading edge and strengthens the pressure side leg of the horseshoe vortex. The shear induced vortex on the suction side of the blade changes the formation mechanism of the hub passage vortex, and the position of the suction side relative to the low pressure area.

     

  • loading
  • [1]
    REGINA K, KALFAS A I, ABHARI R S. Experimental investigation of purge flow effects on a high pressure turbine stage[J]. Journal of Turbomachinery, 2015, 137(4): 0410061-0410069.
    [2]
    ZLATINOV M B, TAN V S, MONTGOMERY M, et al. Turbine hub and shroud sealing flow loss mechanisms[J]. Journal of Turboimachinery, 2012, 134(11): 061027.
    [3]
    SCHREWE S, WERSCHNIK H, SCHIFFER H. Experimental analysis of the interaction between rim seal and main annulus flow in a low pressure two stage axial turbine[J]. Journal of Turbomachinery, 2013, 135(5): 0510031-0510039.
    [4]
    POPOVIC I, HODSON H P. Improving turbine stage efficiency and sealing effectiveness through modifications of the rim seal geometry[J]. Journal of Turbomachinery, 2013, 135(6): 061016.
    [5]
    POPOVIC I, HODSON H P, JANKE E, et al. The effects of unsteadiness and compressibility on the interaction between hub leakage and mainstream flows in high-pressure turbines[J]. Journal of Turbomachinery, 2013, 135(6): 061015.
    [6]
    POPOVIC I, HODSON H P. The effects of a parametric variation of the rim seal geometry on the interaction between hub leakage and mainstream flows in high pressure Turbines[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(11): 112501.
    [7]
    POPOVIC I, HODSON H P. Aerothermal impact of the interaction between hub leakage and mainstream flows in highly-loaded high pressure turbine blades[J]. Journal of Turbomachinery, 2013, 135(6): 061014.
    [8]
    MONGE-CONCEPCION I, BERDANIER R A, BARRINGER M D, et al. Evaluating the effect of vane trailing edge flow on turbine rim sealing[J]. Journal of Turbomachinery, 2020, 142(8): 081001.
    [9]
    SCHREINER B D J, WILSON M, LI Y S, et al. Effect of purge on the secondary flow-field of a gas turbine blade-row[J]. Journal of Turbomachinery, 2020, 142(10): 101006.
    [10]
    周杨, 牛为民, 邹正平, 等. 轮毂封严气体对高压涡轮二次流动的影响[J]. 推进技术, 2006, 27(6): 515-520. doi: 10.3321/j.issn:1001-4055.2006.06.009

    ZHOU Y, NIU W M, ZOU Z P, et al. Effects of coolant injection from rim seals on secondary flow in a high-pressure turbine[J]. Journal of Propulsion Technology, 2006, 27(6): 515-520(in Chinese). doi: 10.3321/j.issn:1001-4055.2006.06.009
    [11]
    贾惟. 轮毂封严与高负荷涡轮端区流动的非定常相互作用[J]. 推进技术, 2017, 38(12): 2674-2685. doi: 10.13675/j.cnki.tjjs.2017.12.005

    JIA W. Unsteady interaction between purge flow and endwall flow in highly-loaded turbines[J]. Journal of Propulsion Technology, 2017, 38(12): 2674-2685(in Chinese). doi: 10.13675/j.cnki.tjjs.2017.12.005
    [12]
    贾惟. 轮毂封严对涡轮端区流动影响的数值研究[J]. 热能动力工程, 2018, 33(8): 20-29. doi: 10.16146/j.cnki.rndlgc.2018.08.004

    JIA W. Numerical Investigation of influence of rim seal purge flow on turbine endwall flows[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(8): 20-29(in Chinese). doi: 10.16146/j.cnki.rndlgc.2018.08.004
    [13]
    JIA W, LIU H X. Numerical investigation of the effect of rim seal on turbine aerodynamic design parameters and end wall flows in low-aspect ratio turbine[J]. Computers & Fluids, 2013, 74: 114-125.
    [14]
    吴康, 任静, 蒋洪德, 等. 整级透平中转静轮缘封严问题研究. Part Ⅰ: 封严与入侵[J]. 工程热物理学报, 2014, 35(5): 873-877.

    WU K, REN J, JIANG H D, et al. Rotor-stator rim seal analysis in one stage gas turbine. Part Ⅰ: Ingestion and seal[J]. Journal of Engineering Thermophysics, 2014, 35(5): 873-877(in Chinese).
    [15]
    吴康, 任静, 蒋洪德. 整级透平中转静轮缘封严问题研究. Part Ⅱ: 不同封严结构的特性[J]. 工程热物理学报, 2015, 36(3): 496-500.

    WU K, REN J, JIANG H D. Rotor-stator rim seal analysis in one stage gas turbine. Part Ⅱ: Characteristic of different seal structure[J]. Journal of Engineering Thermophysics, 2015, 36(3): 496-500(in Chinese).
    [16]
    程舒娴, 李军, 李志刚, 等. 轮缘密封整周模型流动与封严特性数值研究[J]. 工程热物理学报, 2021, 42(2): 370-376.

    CHENG S X, LI J, LI Z G, et al. Numerical investigations on the flow and sealing effectiveness of a turbine rim seal model with whole cavity[J]. Journal of Engineering Thermophysics, 2021, 42(2): 370-376(in Chinese).
    [17]
    BEHR T. Control of rotor tip leakage and secondary flow by casing air injection in unshrouded axial turbines[D]. Dresden: Dresden University of Technology, 2007: 73-87.
    [18]
    SCHUEPBACH P. Influence of rim seal purge flow on performance of an endwall profiled axial turbine[D]. Swiss: Swiss Federal Institute of Technology, 2009: 50-54.
    [19]
    张晶辉, 马宏伟. 轮缘封严气体对涡轮转子性能影响的非定常数值研究[J]. 推进技术, 2014, 35(4): 470-478. doi: 10.13675/j.cnki.tjjs.2014.03.007

    ZHANG J H, MA H W. Unsteady numerical investigation for effects of rim sealing flow on performance of a turbine rotor[J]. Journal of Propulsion Technology, 2014, 35(4): 470-478(in Chinese). doi: 10.13675/j.cnki.tjjs.2014.03.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views(293) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return