Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
SHI W Z,HUANG Q K,LU C,et al. Application of pulse compression technique in steel plate corrosion detection with SH guided wave EMATs[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):324-334 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0229
Citation: SHI W Z,HUANG Q K,LU C,et al. Application of pulse compression technique in steel plate corrosion detection with SH guided wave EMATs[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):324-334 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0229

Application of pulse compression technique in steel plate corrosion detection with SH guided wave EMATs

doi: 10.13700/j.bh.1001-5965.2021.0229
Funds:  National Natural Science Foundation of China (52065049,12064001,51705231,51705232); Natural Science Foundation of Jiangxi, China (20192ACBL20052,20181BAB216020)
More Information
  • Corresponding author: E-mail:luchaoniat@163.com
  • Received Date: 06 May 2021
  • Accepted Date: 28 May 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 15 Jun 2021
  • The application of Barker code pulse compression technique in a shear horizontal (SH) guided wave electromagnetic acoustic transducer (EMAT) has significant value in engineering application as it enhances the signal-to-noise ratio (SNR) and spatial resolution of the corrosion echo detected in in-service steel plates, and helps to realize large-scale and rapid on-line scanning. In this paper, a finite element model of SH-guided wave propagation in a steel plate excited by Barker code signals is established. Then, combined with experimental analysis and numerical calculations, the effects of Barker code sequence length, subpulse length, EMAT design parameters, and lift-off on the SNR and wave packet width of the pulse-compressed echoes are analyzed and compared with those of the traditional tone-burst excitation method. The results show that the SNR of the defect echo processed with the Barker code pulse compression technique is 5.8 dB higher than that with the tone-burst excitation method. When the EMAT liftoff is 3.0 mm, the SNR of the defect echo after Barker code pulse compression is greater than 8.7 dB, while that with the tone-burst excitation method is approximately 0 dB. When the sequence length and subpulse of the Barker code signals are respectively 13 and 15 μs, a circular hole with a depth of 1 mm and a diameter of 20 mm can be detected, the SNR of which is greater than 25.4 dB.

     

  • loading
  • [1]
    HU X W, NG C T, KOTOUSOV A. Scattering characteristics of quasi-Scholte waves at blind holes in metallic plates with one side exposed to water[J]. NDT & E International, 2020, 117: 102379.
    [2]
    SUNGGO C, HWANJEONG C, CLIFF J L. Nondestructive inspection of spent nuclear fuel storage canisters using shear horizontal guided waves[J]. Nuclear Engineering and Technology, 2018, 50(6): 890-898. doi: 10.1016/j.net.2018.04.011
    [3]
    ALAN C K, MIGUEL A F, JEAN PIERRE V D W, et al. Interaction of SH guided waves with wall thinning[J]. NDT & E International, 2019, 101: 94-103.
    [4]
    WEI X, LI G, XIAO L, et al. Shear strength reduction of trapezoidal corrugated steel plates with artificial corrosion pits[J]. Journal of Constructional Steel Research, 2021, 180: 106583. doi: 10.1016/j.jcsr.2021.106583
    [5]
    RATHOD V T, ROY M D. Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezoelectric transducers[J]. NDT & E International, 2011, 44(7): 628-636.
    [6]
    SAIT S, ABBAS Y, BOUBENIDER F. Estimation of thin metal sheets thickness using piezoelectric generated ultrasound[J]. Applied Acoustics, 2015, 99: 85-91. doi: 10.1016/j.apacoust.2015.05.011
    [7]
    WEI X Y, YANG Y, YAO W Q, et al. Design of full bridge high voltage pulser for sandwiched piezoelectric ultrasonic transducers used in long rail detection[J]. Applied Acoustics, 2019, 149: 15-24. doi: 10.1016/j.apacoust.2019.01.012
    [8]
    LEE J H, LEE S J. Application of laser-generated guided wave for evaluation of corrosion in carbon steel pipe[J]. NDT & E International, 2008, 42(3): 222-227.
    [9]
    GAO T F, SUN H, HONG Y Q, et al. Hidden corrosion detection using laser ultrasonic guided waves with multi-frequency local wavenumber estimation[J]. Ultrasonic, 2020, 108: 106182. doi: 10.1016/j.ultras.2020.106182
    [10]
    唐志峰, 孙兴涛, 张鹏飞, 等. 集测厚与导波检测于一体的复合式电磁超声换能器研究[J]. 仪器仪表学报, 2020, 41(9): 98-109. doi: 10.19650/j.cnki.cjsi.J2006440

    TANG Z F, SUN X T, ZHANG P F, et al. Research on composite electromagnetic ultrasonic transducer integrating thickness measurement and guided wave detection[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 98-109(in Chinese). doi: 10.19650/j.cnki.cjsi.J2006440
    [11]
    王晓娟, 赵锴, 郑毅. 管道纵向超声导波的对称模态转换特性分析[J]. 仪器仪表学报, 2020, 41(9): 151-160. doi: 10.19650/j.cnki.cjsi.J2006453

    WANG X J, ZHAO K, ZHENG Y. Characteristics of symmetric mode conversion of longitudinal guided-wave modes in pipeline[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 151-160(in Chinese). doi: 10.19650/j.cnki.cjsi.J2006453
    [12]
    唐琴, 石文泽, 卢超, 等. 多层螺旋线圈电磁超声换能器优化设计及其实验研究[J]. 中南大学学报(自然科学版), 2020, 51(7): 1792-1803.

    TANG Q, SHI W Z, LU C, et al. Optimization design and experimental study of multi-layer spiral coils electromagnetic acoustic transducer[J]. Journal of Central South University(Science and Technology), 2020, 51(7): 1792-1803(in Chinese).
    [13]
    杨理践, 吕瑞宏, 高松巍, 等. 基于SH导波的防腐层能量密度检测机理研究[J]. 仪器仪表学报, 2016, 37(5): 1101-1109. doi: 10.19650/j.cnki.cjsi.2016.05.018

    YANG L J, LYU R H, GAO S W, et al. Research on the detection mechanism of energy density in pipeline coating based on SH wave[J]. Chinese Journal of Scientific Instrument, 2016, 37(5): 1101-1109(in Chinese). doi: 10.19650/j.cnki.cjsi.2016.05.018
    [14]
    ANDRUSCHAK N, SALETES I, FILLETER T, et al. An NDT guided wave technique for the identification of corrosion defects at support locations[J]. NDT & E International, 2015(75): 72-79.
    [15]
    周琛, 何建, 胡暮平, 等. 基于L(0, 2)超声导波的管段结构损伤定位研究[J]. 仪器仪表学报, 2020, 41(12): 181-191.

    ZHOU C, HE J, HU M P, et al. Research on damage location of pipe section based on L ( 0, 2) ultrasonic guided wave[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 181-191(in Chinese).
    [16]
    RICCI M, SENNI L, BURRASCANO P, et al. Pulse-compression ultrasonic technique for the inspection of forged steel with high attenuation[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2012, 54(2): 91-95.
    [17]
    石文泽, 陈巍巍, 陈尧, 等. 基于脉冲压缩技术的高温连铸坯壳厚度测量EMAT设计及应用[J]. 仪器仪表学报, 2019, 40(8): 119-130. doi: 10.19650/j.cnki.cjsi.J1905323

    SHI W Z, CHEN W W, CHEN Y, et al. Design and application of an EMAT for solidification shell thickness detection in continuous casting slab based on the pulse compression technique[J]. Chinese Journal of Scientific Instrument, 2019, 40(8): 119-130(in Chinese). doi: 10.19650/j.cnki.cjsi.J1905323
    [18]
    ZHU W, WU H Z. Characterization and analysis of coded excitation ultrasound parameters for rock properties[J]. Chinese Journal of Acoustics, 2017, 36(1): 29-42.
    [19]
    AN Y, WANG X C, YUE B, et al. A novel method for natural gas pipeline safety online monitoring based on acoustic pulse compression[J]. Process Safety and Environmental Protection, 2019(130): 174-181.
    [20]
    FU J, WEI G, HUANG Q H, et al. Barker coded excitation with linear frequency modulated carrier for ultrasonic imaging[J]. Biomedical Signal Processing & Control, 2014(13): 306-312.
    [21]
    ZHOU Z Z, MA B Q, JIANG J T, et al. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing[J]. Nondestructive Testing & Evaluation, 2014, 29(4): 297-314.
    [22]
    张慧琳, 宋小军. Barker码激励超声导波在长骨检测中的应用[J]. 声学学报, 2014, 39(2): 257-263. doi: 10.15949/j.cnki.0371-0025.2014.02.013

    ZHANG H L, SONG X J. Application of Barker code excited ultrasonic guided waves to long bone detection[J]. Chinese Journal of Acoustics, 2014, 39(2): 257-263(in Chinese). doi: 10.15949/j.cnki.0371-0025.2014.02.013
    [23]
    宋寿鹏, 乔梦丽. 基于NLFM Barker编码的板材焊缝缺陷超声检测方法研究[J]. 仪器仪表学报, 2020, 41(4): 246-254.

    SONG S P, QIAO M L. Research on ultrasonic testing of plate weld flaw based on NLFM Barker coded excitation method[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 246-254(in Chinese).
    [24]
    ISLA J, CEGLA F. Coded excitation for pulse-echo systems[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2017, 64(4): 736-748.
    [25]
    王强, 毛捷, 李威, 等. 橡胶-钢粘接结构的谐振超声编码检测方法[J]. 机械工程学报, 2020, 56(20): 22-27. doi: 10.3901/JME.2020.20.022

    WANG Q, MAO J, LI W, et al. Resonant ultrasonic coded method for rubber-steel bonded structure[J]. Chinese Journal of Mechanical Engineering, 2020, 56(20): 22-27(in Chinese). doi: 10.3901/JME.2020.20.022
    [26]
    赵晓群. 11位Barker码性能研究[J]. 系统工程与电子技术, 1997, 19(6): 56-58. doi: 10.3321/j.issn:1001-506X.1997.06.014

    ZHAO X Q. Study on 11 bits Barker code performances[J]. Journal of Systems Engineering and Electronics, 1997, 19(6): 56-58(in Chinese). doi: 10.3321/j.issn:1001-506X.1997.06.014
    [27]
    李汛江, 苏凡凡, 赵正予. 电离层探测仪回波能量积累算法[J]. 中南大学学报(自然科学版), 2011, 42(12): 3777-3783.

    LI X J, SU F F, ZHAO Z Y. Energy accumulation algorithms for ionosonde[J]. Journal of Central South University(Science and Technology), 2011, 42(12): 3777-3783(in Chinese).
    [28]
    王强, 毛捷, 丁晓东, 等. 衰减匹配的超声Barker码激励方法[J]. 声学学报, 2020, 45(2): 227-234. doi: 10.15949/j.cnki.0371-0025.2020.02.009

    WANG Q, MAO J, DING X D, et al. Ultrasonic Barker-code excitation method with attenuation matching[J]. Chinese Journal of Acoustics, 2020, 45(2): 227-234(in Chinese). doi: 10.15949/j.cnki.0371-0025.2020.02.009
    [29]
    RIHACZEK A W, GOLDEN R M. Range sidelobe suppression for Barker codes[J]. IEEE Transactions on Aerospace & Electronic Systems, 1971(6): 1087-1092.
    [30]
    POUYAN K, PETER C. The choice of ultrasonic inspection method for the detection of corrosion at inaccessible locations[J]. NDT & E International, 2018, 99: 80-92.
    [31]
    HUANG S L, ZHAO W, ZHANG Y S, et al. Study on the lift-off effect of EMAT[J]. Sensors and Actuators A:Physical, 2009, 153(2): 218-221. doi: 10.1016/j.sna.2009.05.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views(252) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return