Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
MA M,YU J,FAN W R. CFRP material detection based on improved joint sparse EIT algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):265-272 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0244
Citation: MA M,YU J,FAN W R. CFRP material detection based on improved joint sparse EIT algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):265-272 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0244

CFRP material detection based on improved joint sparse EIT algorithm

doi: 10.13700/j.bh.1001-5965.2021.0244
Funds:  National Natural Science Foundation of China (61871379); Scientific Research Program of Tianjin Education Commission (2020KJ012)
More Information
  • Corresponding author: E-mail:mm5739@163.com
  • Received Date: 10 May 2021
  • Accepted Date: 09 Jul 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 30 Jul 2021
  • Aiming at the highly ill-posed problem of the application of electrical impedance tomography (EIT) to the damage detection of carbon fiber reinforced polymer (CFRP), a joint ${L_1}$ and ${L_2}$ norm sparse regularization functional model was proposed, and a new constraint is constructed to optimize the solution during the iterative process. The simulation results show that, compared with other traditional algorithms, the improved joint sparse EIT algorithm can effectively improve the electrode artifacts of the damage image, improve the clarity of damage edge, and enhance the accuracy of damage identification and location. The experimental results of CFRP laminate detection show that the improved joint sparse EIT algorithm can improve the anti-interference ability of the image reconstruction, and has good robustness and applicability.

     

  • loading
  • [1]
    包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(19): 52-63.

    BAO J W, JIANG S C, ZHANG D J. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review, 2018, 36(19): 52-63(in Chinese).
    [2]
    王军照. 碳纤维复合材料在航空领域中的应用现状及改进[J]. 今日制造与升级, 2020(8): 48-49.

    WANG J Z. Application status and improvement of carbon fiber composites in aviation field[J]. Manufacture & Upgrading Today, 2020(8): 48-49(in Chinese).
    [3]
    黄梅. 纤维增强复合材料的冲击损伤识别研究[D]. 广州: . 广州大学, 2020: 1-6.

    HUANG M. Study on impact damage identification of fiber reinforced composite[D]. Guangzhou: Guangzhou University, 2020: 1-6(in Chinese).
    [4]
    张海燕, 宋佳昕, 任燕, 等. 碳纤维增强复合材料褶皱缺陷的超声成像[J]. 物理学报, 2021, 70(11): 114301. doi: 10.7498/aps.70.20210032

    ZHANG H Y, SONG J X, REN Y, et al. Ultrasonic imaging of wrinkles in carbon-fiber-reinforce-polymer composites[J]. Acta Physica Sinica, 2021, 70(11): 114301(in Chinese). doi: 10.7498/aps.70.20210032
    [5]
    王从科, 董方旭, 赵付宝, 等. 碳纤维树脂基复合材料内部缺陷X射线成像检测的仿真[J]. 复合材料学与工程, 2017(2): 82-87.

    WANG C K, DONG F X, ZHAO F B, et al. The simulation of X-ray imaging detection of defects in carbon fiber resin composite material[J]. Composites Science and Engineering, 2017(2): 82-87(in Chinese).
    [6]
    王飞. CFRP复合材料缺陷的红外雷达热波成像与层析检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 62-81.

    WANG F. Research on inerared radar thermal wave imaging and tomography for detection of defects in CFRP composite[D]. Harbin: Harbin Institute of Technology, 2020: 62-81(in Chinese).
    [7]
    SCHUELER R P, JOSHI S, SCHULTE K. Damage detection in CFRP by electrical conductivity mapping[J]. Composites Science and Technology, 2001, 61(6): 921-983. doi: 10.1016/S0266-3538(00)00178-0
    [8]
    KHALED A, ARIEF Y, GILLES L. On the anisotropic behavior of electrodes for electrical-based monitoring of CFRP laminated composites[J]. Polymer Composites, 2019, 40(5): 2061-2066. doi: 10.1002/pc.24987
    [9]
    范文茹, 王勃, 周琛. 基于EIT的CFRP层合板缺陷可视化检测[J]. 传感器与微系统, 2020, 39(2): 144-147. doi: 10.13873/j.1000-9787(2020)02-0144-04

    FAN W R, WANG B, ZHOU C. Visualization detection of CFRP laminate defects based on EIT[J]. Transducer and Microsystem Technologies, 2020, 39(2): 144-147(in Chinese). doi: 10.13873/j.1000-9787(2020)02-0144-04
    [10]
    王琦, 张鹏程, 王化祥, 等. 基于块稀疏的电阻抗成像算法[J]. 电子与信息学报, 2018, 40(3): 676-682. doi: 10.11999/JEIT170425

    WANG Q, ZHANG P C, WANG H X, et al. Block-sparse reconstruction for electrical impedance tomography[J]. Journal of Electronics & Information Technology, 2018, 40(3): 676-682(in Chinese). doi: 10.11999/JEIT170425
    [11]
    WANG Q, WANG H, ZHANG R, et al. Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography[J]. Review of Scientific Instruments, 2012, 83(10): 104707. doi: 10.1063/1.4760253
    [12]
    SOUVIK R, ALFIO B. A new optimization approach to sparse reconstruction of log-conductivity in acousto-electric tomography[J]. SIAM Journal on Imaging Science, 2018, 11(2): 1759-1784. doi: 10.1137/17M1148451
    [13]
    成民民, 戎舟, 庞宗强. 基于分裂Bregman方法的加权频差电阻抗成像算法[J]. 国外电子测量技术, 2019, 38(2): 30-35. doi: 10.19652/j.cnki.femt.1801156

    CHENG M M, RONG Z, PANG Z Q. Weighted frequency difference electrical impedance tomography algorithm based on split Bregman method[J]. Foreign Electronic Measurement Technology, 2019, 38(2): 30-35(in Chinese). doi: 10.19652/j.cnki.femt.1801156
    [14]
    范文茹, 李靓瑶, 王勃. 基于改进MRNSD算法的电阻抗层析成像[J]. 北京航空航天大学学报, 2020, 46(8): 1564-1573. doi: 10.13700/j.bh.1001-5965.2019.0504

    FAN W R, LI J Y, WANG B. Electrical impedance tomography based on improved MRNSD algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1564-1573(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0504
    [15]
    LIKASSA H T, FANG W H, LEU J S. Robust image recovery via affine transformation and L2,1 norm[J]. IEEE Access, 2019, 7: 125011-125021. doi: 10.1109/ACCESS.2019.2932470
    [16]
    LIU J J, NI A Q, NI G X. A nonconvex L1(L1-L2) model for image restoration with impulse noise[J]. Journal of Computational and Applied Mathematics, 2020, 378: 112934. doi: 10.1016/j.cam.2020.112934
    [17]
    HE B S, YUAN X M. On the O(1/n) convergence rate of the douglas-rachford alternating direction method[J]. SIAM Journal on Numerical Analysis, 2012, 50(2): 700-709. doi: 10.1137/110836936
    [18]
    徐帅, 程军, 杨继全, 等. 各向异性碳纤维复合材料的方向性涡流检测[J]. 振动、测试与诊断, 2012, 50(2): 700-709. doi: 10.16450/j.cnki.issn.1004-6801.2019.03.026

    XU S, CHENG J, YANG J Q, et al. Eddy current testing of directionality in anisotropic carbon fiber reinforced polymer composite[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 50(2): 700-709(in Chinese). doi: 10.16450/j.cnki.issn.1004-6801.2019.03.026
    [19]
    FAN W R, WANG C. A modified L1/2 regularization algorithm for electrical impedance tomography[J]. Measurement Science and Technology, 2019, 31(1): 015011.
    [20]
    SHI T T, ZHANG X, WANG M, et al. An adaptive non-convex hybrid total variation regularization method for image reconstruction in electrical impedance tomography[J]. Flow Measurement and Instrumentation, 2021, 79: 101937. doi: 10.1016/j.flowmeasinst.2021.101937
    [21]
    寇喜鹏. 结构变分不等式与凸优化问题的若干算法研究[D]. 重庆: 重庆大学, 2015: 79-82.

    KOU X P. Study on some algorithms for structural variational inequality and convex optimization problems[D]. Chongqing: Chongqing University, 2015: 79-82(in Chinese).
    [22]
    LU Y, ZHONG A, LI Q. Beyond finite layer neural networks: Bridging deep architetures and numerical differential equations[C]//International Conference on Machine Learning, 2017: 3276-3285.
    [23]
    ZHANG X Y, CHEN X Y, WANG Z C, et al. EIT-4LDNN: A novel neural network for electrical impedance tomography[J]. Journal of Physics:Conference Series, 2021, 1757: 012013. doi: 10.1088/1742-6596/1757/1/012013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(288) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return