Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHOU Z T,LIU L,SONG X,et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):430-443 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0247
Citation: ZHOU Z T,LIU L,SONG X,et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):430-443 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0247

Remaining useful life prediction method of rolling bearing based on Transformer model

doi: 10.13700/j.bh.1001-5965.2021.0247
Funds:  National Key R & D Program of China (2018YFB1702703)
More Information
  • Corresponding author: E-mail:songxiao@buaa.edu.cn
  • Received Date: 10 May 2021
  • Accepted Date: 04 Jul 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 12 Jul 2021
  • Accurate rolling bearing remaining useful life (RUL) prediction is extremely important to assure the machine’s safety and decrease damage repair. To improve the accuracy of rolling bearing RUL prediction, proposed a bearing RUL prediction method based on the Transformer model, made full use of its self-attention mechanism and the advantages of encoder-decoder structure, solved the memory degradation problem caused by the too-long sequence in bearing RUL prediction, found out the dependent relationship between the input feature and the bearing degradation degree. Meanwhile, trigonometric function transform and cumulative transform are used to correct the feature's monotony and tendency, representing the rolling bearing degradation process better. The average absolute error of RUL prediction based on the Transformer model is reduced by 9.25%, 28.63%, and 34.14%, while the average ss were increased by 2.78%, 19.79%, and 29.38%, according to experimental results on the PHM2012 dataset. Experimental results on the XJTU-SY dataset showed that compared with other prediction methods, the proposed model is reduced by 17.4%, and the average ss were increased by 18.6%, which indicates higher feasibility and superiority.

     

  • loading
  • [1]
    刘建昌, 权贺, 于霞, 等. 基于参数优化VMD和样本熵的滚动轴承故障诊断[J]. 自动化学报, 2022, 48(3): 808-819. doi: 10.16383/j.aas.c190345

    LIU J C, QUAN H, YU X, et al. Rolling bearing fault diagnosis based on parameter optimization VMD and sample entropy[J]. Acta Automatica Sinica, 2022, 48(3): 808-819(in Chinese). doi: 10.16383/j.aas.c190345
    [2]
    张振良, 刘君强, 黄亮, 等. 基于半监督迁移学习的轴承故障诊断方法[J]. 北京航空航天大学学报, 2019, 45(11): 2291-2300. ZHANG Z L, LIU J Q, HUANG L, et al. A bearing fault diagnosis method based on semi-supervised and transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2291-2300 (in Chinese).
    [3]
    田利梅, 龚梦彤, 唐荻音, 等. 基于功耗残差的航天器CMG退化特征提取方法[J]. 北京航空航天大学学报, 2022, 48(10): 1899-1905. doi: 10.13700/j.bh.1001-5965.2021.0060

    TIAN L M, GONG M T, TANG D Y, et al. Degradation indicator extraction for aerospace CMG based on power consumption analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1899-1905(in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0060
    [4]
    袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状[J]. 自动化学报, 2020, 46(10): 2013-2030.

    YUAN Y, ZHANG Y, DING H. Research on key technology of industrial artificial intelligence and its application in predictive maintenance[J]. Acta Automatica Sinica, 2020, 46(10): 2013-2030(in Chinese).
    [5]
    LEI Y G, LI N P, GUO L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834. doi: 10.1016/j.ymssp.2017.11.016
    [6]
    王冰, 李洪儒, 许葆华. 基于多尺度形态分解谱熵的电机轴承预测特征提取及退化状态评估[J]. 振动与冲击, 2013, 32(22): 124-128.

    WANG B, LI H R, XU B H. Motor bearing forecast feature extracting and degradation status identification based on multi-scale morphological decomposition spectral entropy[J]. Journal of Vibration and Shock, 2013, 32(22): 124-128 (in Chinese).
    [7]
    李洪儒, 于贺, 田再克, 等. 基于二元多尺度熵的滚动轴承退化趋势预测[J]. 中国机械工程, 2017, 28(20): 2420-2425. doi: 10.3969/j.issn.1004-132X.2017.20.005

    LI H R, YU H, TIAN Z K, et al. Degradation trend prediction of rolling bearings based on two-element multiscale entropy[J]. China Mechanical Engineering, 2017, 28(20): 2420-2425(in Chinese). doi: 10.3969/j.issn.1004-132X.2017.20.005
    [8]
    REN L, LIU Y X, WANG X K, et al. Cloud–edge-based lightweight temporal convolutional networks for remaining useful life prediction in IIoT[J]. IEEE Internet of Things Journal, 2021, 8(16): 12578-12587. doi: 10.1109/JIOT.2020.3008170
    [9]
    杨宇, 张娜, 程军圣. 全参数动态学习深度信念网络在滚动轴承寿命预测中的应用[J]. 振动与冲击, 2019, 38(10): 199-205. doi: 10.13465/j.cnki.jvs.2019.10.030

    YANG Y, ZHANG N, CHENG J S. Global parameters dynamic learning deep belief networks and its application in rolling bearing life prediction[J]. Journal of Vibration and Shock, 2019, 38(10): 199-205(in Chinese). doi: 10.13465/j.cnki.jvs.2019.10.030
    [10]
    GUO L, LI N P, JIA F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109. doi: 10.1016/j.neucom.2017.02.045
    [11]
    CHEN Y H, PENG G L, ZHU Z Y, et al. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing, 2020, 86: 105919. doi: 10.1016/j.asoc.2019.105919
    [12]
    康守强, 周月, 王玉静, 等. 基于改进SAE和双向LSTM的滚动轴承RUL预测方法[J]. 自动化学报, 2022, 48(9): 2327-2336.

    KANG S Q, ZHOU Y, WANG Y J, et al. RUL prediction method of a rolling bearing based on improved SAE and Bi-LSTM[J]. Acta Automatica Sinica, 2022, 48(9): 2327-2336(in Chinese).
    [13]
    邱大伟, 刘子辰, 周一青, 等. 基于Transformer神经网络的滚动轴承故障类型识别[J]. 高技术通讯, 2021, 31(1): 1-11.

    QIU D W, LIU Z C, ZHOU Y Q, et al. A novel fault type detection method of rolling bearing using Transformer neural networks[J]. Chinese High Technology Letters, 2021, 31(1): 1-11(in Chinese).
    [14]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J/OL]. (2017-06-12)[2021-03-20].https://arxiv.org/abs/1706.03762.
    [15]
    WANG B, LEI Y G, YAN T, et al. Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery[J]. Neurocomputing, 2020, 379: 117-129. doi: 10.1016/j.neucom.2019.10.064
    [16]
    MA M, MAO Z. Deep-convolution-based LSTM network for remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1658-1667. doi: 10.1109/TII.2020.2991796
    [17]
    WANG B, LEI Y G, LI N P, et al. Deep separable convolutional network for remaining useful life prediction of machinery[J]. Mechanical Systems and Signal Processing, 2019, 134: 106330. doi: 10.1016/j.ymssp.2019.106330
    [18]
    ZENG F C, LI Y M, JIANG Y H, et al. An online transfer learning-based remaining useful life prediction method of ball bearings[J]. Measurement, 2021, 176: 109201. doi: 10.1016/j.measurement.2021.109201
    [19]
    NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: An ex-perimental platform for bearings accelerated degradation tests[C]//IEEE International Conference on Prognostics and Health M-anagement. Piscataway: IEEE Press, 2012: 1-8.
    [20]
    SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52-62. doi: 10.1109/TIM.2014.2330494
    [21]
    SINGLETON R K, STRANGAS E G, AVIYENTE S. Extended Kalman filtering for remaining-useful-life estimation of bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1781-1790. doi: 10.1109/TIE.2014.2336616
    [22]
    WANG F T, LIU X F, DENG G, et al. Remaining life prediction method for rolling bearing based on the long short-term memory network[J]. Neural Processing Letters, 2019, 50(3): 2437-2454. doi: 10.1007/s11063-019-10016-w
    [23]
    LUO J H, ZHANG X. Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction[J]. Applied Intelligence, 2022, 52(1): 1076-1091. doi: 10.1007/s10489-021-02503-2
    [24]
    MO Y, WU Q H, LI X, et al. Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit[J]. Journal of Intelligent Manufacturing, 2021, 32(7): 1997-2006. doi: 10.1007/s10845-021-01750-x
    [25]
    HINCHI A Z, TKIOUAT M. Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network[J]. Procedia Computer Science, 2018, 127: 123-132. doi: 10.1016/j.procs.2018.01.106
    [26]
    HONG S, ZHOU Z, ZIO E, et al. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method[J]. Digital Signal Processing, 2014, 27: 159-166. doi: 10.1016/j.dsp.2013.12.010
    [27]
    WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1): 401-412. doi: 10.1109/TR.2018.2882682
    [28]
    CAO Y D, DING Y F, JIA M P, et al. A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings[J]. Reliability Engineering & System Safety, 2021, 215: 107813.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(10)

    Article Metrics

    Article views(1717) PDF downloads(309) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return