Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LI C X,LI T Y,LI Z Z,et al. Intelligent algorithm of warship’s vital parts detection, trajectory prediction and pose estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):444-456 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0253
Citation: LI C X,LI T Y,LI Z Z,et al. Intelligent algorithm of warship’s vital parts detection, trajectory prediction and pose estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):444-456 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0253

Intelligent algorithm of warship’s vital parts detection, trajectory prediction and pose estimation

doi: 10.13700/j.bh.1001-5965.2021.0253
More Information
  • Corresponding author: E-mail:lccxmail@163.com
  • Received Date: 14 May 2021
  • Accepted Date: 25 Jun 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 05 Jul 2021
  • Accurate detection and attack of warship’s vital parts can effectively improve the damage efficiency of anti-ship missile. Aiming at the problems of low detection accuracy on vital parts and insufficient accuracy of guidance error, this paper proposes an algorithm of warship’s vital parts detection, trajectory prediction and pose estimation based on deep learning. The deep semantic information and shallow positioning information are integrated, and the SoftPool modules are used to preserve fine-grained features. The detection accuracy of multi-angle and multi-scale warship’s vital parts is improved. Combining the detection results with the warship’s space structure can establish the mapping relationship, which is used to calculate the three-dimensional position and posture of the seeker. The long short term memory network is introduced to mine the space-time characteristics of key-points to realize the dynamic trajectory prediction on multi-scale warship. Experimental results show that this algorithm has high accuracy in detection of warship’s vital parts and trajectory prediction. The posture estimation results of the seeker are precise. The situational awareness requirement in complex marine battlefield of autonomous self-piloted anti-ship missiles is satisfied in independent penetration perspective.

     

  • loading
  • [1]
    余瑞星, 吴虞霖, 曹萌, 等. 基于边缘与角点相结合的目标提取与匹配算法[J]. 西北工业大学学报, 2017, 35(4): 586-590. doi: 10.3969/j.issn.1000-2758.2017.04.005

    YU R X, WU Y L, CAO M, et al. Target extraction and image matching algorithm based on combination of edge and corner[J]. Journal of Northwestern Polytechnical University, 2017, 35(4): 586-590(in Chinese). doi: 10.3969/j.issn.1000-2758.2017.04.005
    [2]
    苏娟, 杨龙, 黄华, 等. 用于SAR图像小目标舰船检测的改进SSD算法[J]. 系统工程与电子技术, 2020, 42(5): 1026-1034. doi: 10.3969/j.issn.1001-506X.2020.05.08

    SU J, YANG L, HUANG H, et al. Improved SSD algorithm for small-sized SAR ship detection[J]. Systems Engineering and Electronics, 2020, 42(5): 1026-1034(in Chinese). doi: 10.3969/j.issn.1001-506X.2020.05.08
    [3]
    GAO F, HE Y S, WANG J, et al. Anchor-free convolutional network with dense attention feature aggregation for ship detection in SAR images[J]. Remote Sensing, 2020, 12(16): 2619. doi: 10.3390/rs12162619
    [4]
    TANG G, LIU S B, FUJINO I, et al. H-YOLO: A single-shot ship detection approach based on region of interest preselected network[J]. Remote Sensing, 2020, 12(24): 4192. doi: 10.3390/rs12244192
    [5]
    王玺坤, 姜宏旭, 林珂玉. 基于改进型YOLO算法的遥感图像舰船检测[J]. 北京航空航天大学学报, 2020, 46(6): 1184-1191. doi: 10.13700/j.bh.1001-5965.2019.0394

    WANG X K, JIANG H X, LIN K Y. Remote sensing image ship detection based on modified YOLO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1184-1191(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0394
    [6]
    ZHANG Y L, GUO L H, WANG Z F, et al. Intelligent ship detection in remote sensing images based on multi-layer convolutional feature fusion[J]. Remote Sensing, 2020, 12(20): 3316. doi: 10.3390/rs12203316
    [7]
    刘勇, 李杰, 张建林, 等. 基于深度学习的二维人体姿态估计研究进展[J]. 计算机工程, 2021, 47(3): 1-16. doi: 10.19678/j.issn.1000-3428.0058799

    LIU Y, LI J, ZHANG J L, et al. Research progress of two-dimensional human pose estimation based on deep learning[J]. Computer Engineering, 2021, 47(3): 1-16(in Chinese). doi: 10.19678/j.issn.1000-3428.0058799
    [8]
    TOSHEV A, SZEGEDY C. DeepPose: Human pose estimation via deep neural networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014 : 1653-1660.
    [9]
    TOMPSON J, JAIN A, LECUN Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation[C]//Proceedings of the Conference on Neural Information Processing Systems. New York: Curran Associates Press, 2014: 1799-1807.
    [10]
    WEI S H, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 4724-4732.
    [11]
    陈宗海, 裴浩渊, 王纪凯, 等. 基于单目相机的视觉重定位方法综述[J]. 机器人, 2021, 43(3): 373-384. doi: 10.13973/j.cnki.robot.200350

    CHEN Z H, PEI H Y, WANG J K, et al. Survey of monocular camera-based visual relocalization[J]. Robot, 2021, 43(3): 373-384(in Chinese). doi: 10.13973/j.cnki.robot.200350
    [12]
    ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: Human trajectory prediction in crowded spaces[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 961-971.
    [13]
    ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. (2019-04-16)[2021-04-26]. https://arxiv.org/abs/1904.07850.
    [14]
    STERGIOU A, POPPE R, KALLIATAKIS G. Refining activation downsampling with SoftPool[C]// IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021 : 10337-10346.
    [15]
    ZENG W L, QUAN Z B, ZHAO Z Y, et al. A deep learning approach for aircraft trajectory prediction in terminal airspace[J]. IEEE Access, 2020, 8: 151250-151266. doi: 10.1109/ACCESS.2020.3016289
    [16]
    黄洁, 姜志国, 张浩鹏, 等. 基于卷积神经网络的遥感图像舰船目标检测[J]. 北京航空航天大学学报, 2017, 43(9): 1841-1848. doi: 10.13700/j.bh.1001-5965.2016.0755

    HUANG J, JIANG Z G, ZHANG H P, et al. Ship object detection in remote sensing images using convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1841-1848(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0755
    [17]
    张雪松, 庄严, 闫飞, 等. 基于迁移学习的类别级物体识别与检测研究与进展[J]. 自动化学报, 2019, 45(7): 1224-1243. doi: 10.16383/j.aas.c180093

    ZHANG X S, ZHUANG Y, YAN F, et al. Status and development of transfer learning based category-level object recognition and detection[J]. Acta Automatica Sinica, 2019, 45(7): 1224-1243(in Chinese). doi: 10.16383/j.aas.c180093
    [18]
    XIAO B, WU H P, WEI Y C. Simple baselines for human pose estimation and tracking[C]//Proceedings of the Conference on European Conference on Computer Vision. Berlin: Springer, 2018: 472-487.
    [19]
    YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018 : 2403-2412.
    [20]
    NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the Conference on European Conference on Computer Vision. Berlin: Springer, 2016: 483-499.
    [21]
    王新, 杨任农, 左家亮, 等. 基于HPSO-TPFENN的目标机轨迹预测[J]. 西北工业大学学报, 2019, 37(3): 612-620. doi: 10.3969/j.issn.1000-2758.2019.03.025

    WANG X, YANG R N, ZUO J L, et al. Trajectory prediction of target aircraft based on HPSO-TPFENN neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 612-620(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.03.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views(498) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return