Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
WANG Z X,WAN Z Q,WANG X Z,et al. Fast stability analysis method for composite panel with variable angle tow fiber[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):353-366 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0259
Citation: WANG Z X,WAN Z Q,WANG X Z,et al. Fast stability analysis method for composite panel with variable angle tow fiber[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):353-366 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0259

Fast stability analysis method for composite panel with variable angle tow fiber

doi: 10.13700/j.bh.1001-5965.2021.0259
Funds:  National Key R & D Program of China (2017YFB0503002); Zhejiang Key Laboratory of General Aviation Operation Technology (General Aviation Institute of Zhejiang Jiande) (JDGA2020-4)
More Information
  • Corresponding author: E-mail:wangxiaozhemvp@buaa.edu.cn
  • Received Date: 18 May 2021
  • Accepted Date: 11 Jun 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 22 Jun 2021
  • Benefiting from the curved fibre paths, variable-angle-tow (VAT) fibre composites feature a larger design space than traditional straight-fibre reinforced plastics. VAT fiber composite has better in-plane stability than the straight fiber, hence it has a higher buckling resistance potential at the same weight as a wing panel. To deeply analyze the influence law of fiber path on the stability of VAT fiber composite, the stability analysis method of curved fiber siding under in-plane load is derived, based on the theory of isotropic thin plate. By introducing the Airy stress function and the Lagrange multiplier which describes the arbitrary boundary conditions, a single variational equation suitable for arbitrary displacement and load boundary conditions of VAT fiber composite is established, which avoids the restriction on the solution speed by repeated iterations between nonlinear equilibrium equations and nonlinear compatibility equations. Based on the Von Karman large deformation equation, a solution model for linear and geometry nonlinear stability problem in the post-buckling state is derived, and then approached by Rayleigh-Ritz method. The accuracy of the established fast tool is the same as that of the commercial software MSC.Nastran, but the solution time is highly reduced. Thanks to this advantage, the buckling and nonlinear performance of VAT panel under arbitrary displacement boundary conditions can be quickly captured, and the influence law of fiber path on buckling and post-buckling of a VAT panel is effectively summarized.

     

  • loading
  • [1]
    MANGALGIRI P D. Composite materials for aerospace applications[J]. Bulletin of Materials Science, 1999, 22(3): 657-664. doi: 10.1007/BF02749982
    [2]
    LIANG L, WAN Z Q, YANG C. Aeroelastic optimization on composite skins of large aircraft wings[J]. Science China Technological Sciences, 2012, 55(4): 1078-1085. doi: 10.1007/s11431-011-4734-0
    [3]
    WAGNER M, NORRIS G. Boeing 787 dreamliner[M]. Minneapolis: Zenith Press, 2009: 59-60
    [4]
    GÜRDAL Z, TATTING B F, WU C K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39: 911-22. doi: 10.1016/j.compositesa.2007.11.015
    [5]
    GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept[J]. AIAA Journal, 1993, 31: 751-8. doi: 10.2514/3.11613
    [6]
    HAO P, YUAN X, LIU C, et al. An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 205-238. doi: 10.1016/j.cma.2018.04.046
    [7]
    GROH R M, WEAVER P. Mass optimisation of variable angle tow, variable thickness panels with static failure and buckling constraints[C] //Aiaa/asce/ahs/asc Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2013: 452.
    [8]
    KIM B C, WEAVER P M, POTTER K. Computer aided modelling of variable angle tow composites manufactured by continuous tow shearing[J]. Composite Structures, 2015, 129: 256-267. doi: 10.1016/j.compstruct.2015.04.012
    [9]
    BROOKS T R, MARTINS J R R A, KENNEDY G J. Aerostructural tradeoffs for tow-steered composite wings[J]. Journal of Aircraft, 2020, 57(5): 787-799. doi: 10.2514/1.C035699
    [10]
    STANFORD B K, JUTTE C V. Comparison of curvilinear stiffeners and tow steered composites for aeroelastic tailoring of aircraft wings[J]. Computers & Structures, 2017, 183: 48-60.
    [11]
    NARDO S V. An exact solution for the buckling load of flat sandwich panels with loaded edges clamped[J]. Journal of the Aeronautical Sciences, 1953, 20(9): 605-612.
    [12]
    THIELEMANN W. Contribution to the problem of buckling of orthotropic plates, with special reference to plywood: NACA-TM-1263[R]. Washington D. C. : NACA, 1950: 43-58.
    [13]
    GREEN A E. The buckling of flat rectangular plates: The philosophical magazine[J]. Journal of Experimental and Applied Physics, 1945, 36(7): 261.
    [14]
    ASHTON J E, WADDOUPS M E. Analysis of anisotropic plates[J]. Journal of Composite Materials, 1969, 3(1): 148-165. doi: 10.1177/002199836900300111
    [15]
    LOJA M A R, BARBOSA J I, SOARES C M M. Dynamic instability of variable stiffness composite plates[J]. Composite Structures, 2017, 182: 402-411. doi: 10.1016/j.compstruct.2017.09.046
    [16]
    WU Z, RAJU G, WEAVER P M. Postbuckling analysis of variable angle tow composite plates[J]. International Journal of Solids and Structures, 2013, 50(10): 1770-1780. doi: 10.1016/j.ijsolstr.2013.02.001
    [17]
    WU Z, CHEN X, WEAVER P M. Buckling analysis of variable angle tow composite plates with one circular delaminationp[C]//21st International Conference on Composite Materials. Xi’an: Chinese Society for Composite Materials, 2017: 3733.
    [18]
    秦永利, 祝颖丹, 范欣愉, 等. 纤维曲线铺放制备变刚度复合材料层合板的研究进展[J]. 玻璃钢/复合材料, 2012(1): 61-66. doi: 10.3969/j.issn.1003-0999.2012.01.013

    QIN Y L, ZHU Y D, FAN X Y, et al. Research progress on fabrication of variable stiffness composite laminates by fiber curve laying[J]. Fiber Reinforced Plastics/Composites, 2012(1): 61-66(in Chinese). doi: 10.3969/j.issn.1003-0999.2012.01.013
    [19]
    马永前, 张淑杰, 许震宇. 纤维曲线铺放的变刚度复合材料层合板的屈曲[J]. 玻璃钢/复合材料, 2009(5): 31-35.

    MA Y Q, ZHANG S J, XU Z Y. Buckling of variable stiffness composite laminates with fiber curve laying[J]. Fiber Reinforced Plastics/Composites, 2009(5): 31-35(in Chinese).
    [20]
    杜宇, 杨涛, 戴维蓉, 等. 纤维曲线铺放的变刚度复合材料损伤失效试验研究[J]. 固体火箭技术, 2013, 36(6): 826-830.

    DU Y, YANG T, DAI W R, et al. Experimental research of damaging failure of variable-stiffness composite[J]. Journal of Solid Rocket Technology, 2013, 36(6): 826-830(in Chinese).
    [21]
    牛雪娟, 杨涛, 杜宇, 等. 变刚度纤维曲线铺放复合材料层合板的有限元建模和拉伸特性分析[J]. 宇航材料工艺, 2014, 44(4): 19-24. doi: 10.3969/j.issn.1007-2330.2014.04.003

    NIU X J, YANG T, DU Y, et al. Finite element modeling and tensile properties analysis of curvelinear fiber-placed variable-stiffness composite laminates[J]. Aerospace Materials and Technology, 2014, 44(4): 19-24(in Chinese). doi: 10.3969/j.issn.1007-2330.2014.04.003
    [22]
    卫宇璇, 张明, 刘佳, 等. 基于自动铺放技术的高精度变刚度复合材料层合板屈曲性能[J]. 复合材料学报, 2020, 37(11): 2807-2815. doi: 10.13801/j.cnki.fhclxb.20200218.001

    WEI Y X, ZHANG M, LIU J, et al. Buckling performance of high-precision variable stiffness composites laminate based on automatic placement technology[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2807-2815(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200218.001
    [23]
    KIM B C, WEAVER P M, POTTER K. Manufacturing characteristics of the continuous tow shearing method for manufacturing of variable angle tow composites[J]. Composites Part A: Applied Science and Manufacturing. 2014, 61: 141-51.
    [24]
    REDDY J N. A genera lization of two-dimensional theories of laminated composite plates[J]. Communications in Applied Numerical Methods, 1987, 3(3): 173-180.
    [25]
    BISAGNI C, VESCOVINI R. Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels[J]. Thin-Walled Structures, 2009, 47(3): 318-334. doi: 10.1016/j.tws.2008.07.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views(287) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return