Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
HAN X L,SHANGGUAN H,ZHANG X,et al. A low-dose CT image denoising method based on artifact estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):491-502 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0263
Citation: HAN X L,SHANGGUAN H,ZHANG X,et al. A low-dose CT image denoising method based on artifact estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):491-502 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0263

A low-dose CT image denoising method based on artifact estimation

doi: 10.13700/j.bh.1001-5965.2021.0263
Funds:  National Natural Science Foundation of China (62001321); Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2019L0642); Excellent Graduate Innovation Project of Shanxi Province (2020SY417,2020SY423); Natural Science Foundation of Shanxi Province (201901D111261)
More Information
  • Corresponding author: E-mail:shangguan_hong@tyust.edu.cn
  • Received Date: 19 May 2021
  • Accepted Date: 08 Aug 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 15 Nov 2021
  • Low-dose CT (LDCT) contains abundant tissue structure, pathological information and noise artifacts with extremely irregular distribution.These two different types of information have comparable amplitude distributions. Therefore, the LDCT denoising task is prone to some problems, such as insufficient feature extraction, insufficient network sensitivity to the directional characteristics of noise artifacts, and excessive smoothing of the denoising results. In response to the above problems, this work uses the U-Net network as the basic model of the denoising network, and designs a LDCT denoising network based on artifact estimation. The proposed network mainly includes two parts: the main feature extraction network and the direction-sensitive attention sub-network.Firstly, to better use the differences between various scale features and increase the efficiency of feature extraction, we add a dense feature improvement module to the codec U-Net structure. Secondly, we design a direction-sensitive attention subnetwork to improve the sensitivity of the denoising network to the direction characteristics of the noise artifacts. Finally, to ensure the stability of network training, we utilize a variety of loss functions to optimize the network training process. The experimental results show that the proposed algorithm is superior to other mainstream LDCT denoising algorithms in terms of visual effects and quantitative indicators.

     

  • loading
  • [1]
    ZHANG H, HUANG J, MA J H, et al. Iterative reconstruction for X-ray computed tomography using prior-image induced nonlocal regularization[J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61(9): 2367-2378. doi: 10.1109/TBME.2013.2287244
    [2]
    THOMAS L, SLOVIS M D. The ALARA (as low as reasonably achievable) concept in pediatric CT intelligent dose reduction[J]. Pediatric Radiology, 2002, 32(4): 219-220. doi: 10.1007/s00247-002-0665-z
    [3]
    罗立民, 胡轶宁, 陈阳. 低剂量CT成像的研究现状与展望[J]. 数据采集与处理, 2015, 30(1): 24-34. doi: 10.16337/j.1004-9037.2015.01.002

    LUO L M, HU Y N, CHEN Y. Research status and prospect for low-dose CT imaging[J]. Journal of Data Acquisition and Processing, 2015, 30(1): 24-34(in Chinese). doi: 10.16337/j.1004-9037.2015.01.002
    [4]
    许琼. X 线 CT 不完备投影数据统计重建研究[D]. 西安: 西安交通大学,2012:129.

    XU Q. Statistical reconstruction methods for insufficient X-ray CT projection data[D]. Xi'an: Xi'an Jiaotong University, 2012: 129(in Chinese).
    [5]
    CHEN W B, SHAO Y L, JIA L N, et al. Low-dose CT image denoising model based on sparse representation by stationarily classified sub-dictionaries[J]. IEEE Access, 2019, 7: 116859-116874. doi: 10.1109/ACCESS.2019.2932754
    [6]
    BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2005: 60-65.
    [7]
    CHEN Y, YANG Z, HU Y N, et al. Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means[J]. Physics in Medicine & Biology, 2012, 57(9): 2667-2688.
    [8]
    FERUGLIO P F, VINEGONI C, GROS J, et al. Block matching 3D random noise filtering for absorption optical projection tomography[J]. Physics in Medicine & Biology, 2010, 55(18): 5401-5415. doi: 10.1088/0031-9155/55/18/009
    [9]
    CHEN H, ZHANG Y, ZHANG W H, et al. Low-dose CT via convolutional neural network[J]. Biomedical Optics Express, 2017, 8(2): 679-694. doi: 10.1364/BOE.8.000679
    [10]
    SHAN H M, ZHANG Y, YANG Q S, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2D trained network[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1522-1534. doi: 10.1109/TMI.2018.2832217
    [11]
    WU D F, KIM K, FAKHRI G E, et al. A cascaded convolutional neural network for X-ray low-dose CT image denoising[EB/OL]. (2017-08-28)[2021-05-01].https://arxiv.org/abs/1705.04267.
    [12]
    KANG E, MIN J H, YE J C. Wavelet domain residual network (WavResNet) for low-dose X-ray CT reconstruction[EB/OL]. (2017-03-04)[2021-05-01].https://arxiv.org/abs/1703.01383.
    [13]
    CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. doi: 10.1109/TMI.2017.2715284
    [14]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
    [15]
    HEINRICH M P, STILLE M, BUZUG T M, et al. Residual U-Net convolutional neural network architecture for low-dose CT denoising[J]. Current Directions in Biomedical Engineering, 2018, 4(1): 297-300. doi: 10.1515/cdbme-2018-0072
    [16]
    IEK, Z, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2016, 424-432.
    [17]
    WANG T Y, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 12262-12271.
    [18]
    SHEN Y Y, FENG Y D, WANG W M, et al. MBA-RainGAN: A multi-branch attention generative adversarial network for mixture of rain removal[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2022: 3418-3422.
    [19]
    ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 695-704.
    [20]
    HU X W, FU C W, ZHU L, et al. Depth-attentional features for single-image rain removal[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 8014-8023.
    [21]
    WANG Y L, ZHANG H K, LIU Y, et al. Gradient information guided deraining with a novel network and adversarial training[EB/OL]. (2019-10-09)[2021-05-01].https://arxiv.org/abs/1910.03839.
    [22]
    GUO S, YAN Z F, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 1712-1722.
    [23]
    WANG Y, GONG D, YANG J, et al. An effective two-branch model-based deep network for single image deraining[EB/OL]. (2019-05-14) [2021-05-01]. https://arxiv.org/abs/1905.05404v1.
    [24]
    张雄, 杨琳琳, 上官宏, 等. 基于生成对抗网络和噪声水平估计的低剂量CT图像降噪方法[J]. 电子与信息学报, 2021, 43(8): 2404-2413. doi: 10.11999/JEIT200591

    ZHANG X, YANG L L, SHANGGUAN H, et al. A low-dose CT image denoising method based on generative adversarial network and noise level estimation[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2404-2413(in Chinese). doi: 10.11999/JEIT200591
    [25]
    DU W C, CHEN H, LIAO P X, et al. Visual attention network for low-dose CT[J]. IEEE Signal Processing Letters, 2019, 26(8): 1152-1156. doi: 10.1109/LSP.2019.2922851
    [26]
    LI M, HSU W, XIE X, et al. SACNN: Self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network[J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 2289-2301. doi: 10.1109/TMI.2020.2968472
    [27]
    LIU W, WANG Z, LIU X, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26. doi: 10.1016/j.neucom.2016.12.038
    [28]
    YOU C Y, YANG Q S, SHAN H M, et al. Structurally-sensitive multi-scale deep neural network for low-dose CT denoising[J]. IEEE Access, 2018, 6: 41839-41855.
    [29]
    WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2536-2545. doi: 10.1109/TMI.2017.2708987
    [30]
    KYUNGSANG K, LI Z Q, MIN J H, et al. Low dose CT grand challenge[EB/OL]. [2021-05-01]. http://www.aapm.org/GrandChallenge/LowDoseCT/.
    [31]
    SMITH K, JUSTIN K. Piglet dataset[EB/OL]. [2021-05-01]. http://homepage.usask.ca/ ~xiy525/.
    [32]
    YAO S S, LIN W S, OOG E P, et al. Contrast signal-to-noise ratio for image quality assessment[C]//IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2005, 1: 8835943.
    [33]
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
    [34]
    SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. doi: 10.1109/TIP.2005.859378
    [35]
    SHEIKH H R, BOVIK A C, DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128. doi: 10.1109/TIP.2005.859389
    [36]
    DAMERA-VENKATA N, KITE T D, GEISLER W S, et al. Image quality assessment based on a degradation model[J]. IEEE Transactions on Image Processing, 2000, 9(4): 636-650. doi: 10.1109/83.841940
    [37]
    DIEDERK P K, JIMMY L B. Adam: A method for stochastic optimization[C]//International Conference on Learning Representations (ICLR), 2015: 1-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views(537) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return