Volume 49 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
DONG X X,YUE Z J,WANG Z,et al. Uncertainty lightweight design of sandwich structure of rocket fairing cone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):625-635 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0267
Citation: DONG X X,YUE Z J,WANG Z,et al. Uncertainty lightweight design of sandwich structure of rocket fairing cone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):625-635 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0267

Uncertainty lightweight design of sandwich structure of rocket fairing cone

doi: 10.13700/j.bh.1001-5965.2021.0267
More Information
  • Corresponding author: E-mail:mountain_yue@bit.edu.cn
  • Received Date: 24 May 2021
  • Accepted Date: 19 Oct 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 09 Nov 2021
  • In order to analyze the influence of uncertainty on the thermal stability of the launch vehicle fairing cone shell sandwich structure and to guide the lightweight design of the structure, a model of the fairing front cone section sandwich shell is established and a temperature field model is built, based on which the thermal stability analysis of the cone shell is carried out and the critical axial pressure under the combined force-thermal load is derived. For the primary uncertainty factors, interval uncertainty optimization models and sensitivity analyses are also produced. The interval probability approach is then used to convert these models into deterministic optimization problems, which are then resolved using the genetic algorithm-collocation interval analysis method (GA-CIAM) method. The calculation results show that considering the influence of aerodynamic/thermal load and material parameter uncertainty, the optimization design of the front cone section of the fairing can effectively realize the structural lightweight on the premise of meeting the design requirements.

     

  • loading
  • [1]
    杨灿. 耐高温复合材料整流罩性能及热力学分析 [D]. 哈尔滨: 哈尔滨工程大学, 2014.

    YANG C. Study on the high temperature-resistant composites fairing and its mechanical properities under high service temperature [D]. Harbin: Harbin Engineering University, 2014(in Chinese).
    [2]
    MEYERS C A, HYER M W, SHUART M J. Thermal buckling and postbuckling of symmetrically laminated composite plates[J]. Journal of Thermal Stresses, 1992, 14(4): 519-540.
    [3]
    NAJ R, BOROUJERDY M S, ESLAMI M R. Thermal and mechanical instability of functionally graded truncated conical shells[J]. Thin-Walled Structures, 2008, 46(1): 65-78. doi: 10.1016/j.tws.2007.07.011
    [4]
    DUNG D V, CHAN D Q. Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT[J]. Composite Structures, 2017, 159(1): 827-841.
    [5]
    DUC N D, SEUNG-EOCK K, CHAN D Q. Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT[J]. Journal of Thermal Stresses, 2017, 41(3): 1-35.
    [6]
    TORABI J, KIANI Y, ESLAMI M R. Linear thermal buckling analysis of truncated hybrid FGM conical shells[J]. Composites Part B Engineering, 2013, 50(7): 265-72.
    [7]
    张东, 穆京京, 蒋亦幪, 等. 轴压下圆柱加筋壳的热屈曲[J]. 强度与环境, 2019, 46(6): 32-37. doi: 10.19447/j.cnki.11-1773/v.2019.06.005

    ZHANG D, MU J J, JIANG Y M, et al. Thermal buckling of stiffened cylinders under axial compression[J]. Structure & Environment Engineering, 2019, 46(6): 32-37(in Chinese). doi: 10.19447/j.cnki.11-1773/v.2019.06.005
    [8]
    唐统帅. 基于散热和承载功能的格栅加筋板研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.

    TANG T S. Research on grid-stiffened panels base on heat transfer and load-carrying capacity [D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [9]
    徐腾飞, 辛健强, 董永朋, 等. 柔性支撑上FGM矩形薄板热屈曲的封闭形式解[J]. 强度与环境, 2018, 45(3): 20-29. doi: 10.19447/j.cnki.11-1773/v.2018.03.004

    XU T F, XIN J Q, DONG Y P, et al. Closed form solution for thermal buckling of rectangular FGM thin plates with flexible support[J]. Structure & Environment Engineering, 2018, 45(3): 20-29(in Chinese). doi: 10.19447/j.cnki.11-1773/v.2018.03.004
    [10]
    BELLMAN R E, ZADEH L A. Application series decision-making in a fuzzy environment[J]. Management Science, 1970, 17(4): 141-164. doi: 10.1287/mnsc.17.4.B141
    [11]
    FAES M. Interval methods for the identification and quantification of inhomogeneous uncertainty in finite element models [D]. Belgium: KU Leuven, 2017.
    [12]
    尹莲花. 高速飞行器热防护结构分析与热结构优化方法研究 [D]. 北京: 北京理工大学, 2008.

    YIN L H. Analysis of thermal protection structure and study of thermal structural optimization for high speed aircraft [D]. Beijing: Beijing Institute of Technology, 2008(in Chinese).
    [13]
    BRUSH D O, ALMROTH B O, HUTCHINSON J W. Buckling of bars, plates, and shells[J]. Journal of Applied Mechanics, 1975, 42(4): 911.
    [14]
    JIANG C, HAN X, LIU G R, et al. A nonlinear interval number programming method for uncertain optimization problems[J]. European Journal of Operational Research, 2008, 188(1): 1-13. doi: 10.1016/j.ejor.2007.03.031
    [15]
    祁武超, 邱志平. 基于区间分析的结构非概率可靠性优化设计[J]. 中国科学:物理学 力学 天文学, 2013, 43(1): 85-93.

    QI W C, QIU Z P. Non-probabilistic reliability-based structural design optimization based on the interval analysis method[J]. Science China Physics, Mechanics & Astronomy, 2013, 43(1): 85-93(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(365) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return