Volume 49 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
MENG Q L,ZHAO Z M,CHEN X G,et al. Thermal vacuum test study of mechanically pumped two-phase loop for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):559-568 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0270
Citation: MENG Q L,ZHAO Z M,CHEN X G,et al. Thermal vacuum test study of mechanically pumped two-phase loop for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):559-568 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0270

Thermal vacuum test study of mechanically pumped two-phase loop for space remote sensor

doi: 10.13700/j.bh.1001-5965.2021.0270
Funds:  National Natural Science Foundation of China (51806010)
More Information
  • Corresponding author: E-mail:qlmeng@mail.ustc.edu.cn
  • Received Date: 25 May 2021
  • Accepted Date: 14 Mar 2022
  • Available Online: 02 Jun 2023
  • Publish Date: 24 Mar 2022
  • In this paper, a test setup of mechanically pumped two-phase loop (MPTL) was constructed in response to the demand for high precision and high stability temperature control of the core components in space remote sensors. In this setup, a two-phase thermal-controlled accumulator with passive cooling was adopted. For the purpose of verifying the working performance of the MPTL system under the conditions of high vacuum, ultra-low temperature and varied external heat flux, the heat dissipation and temperature control ability of the MPTL system under different test conditions were tested in the vacuum chamber. Then the obtained test data, including temperature and pressure, were used to analyze the operating characteristics of the main loop, the thermodynamic behaviors in the accumulator and the heat and mass transfer between the main loop and the accumulator. The test results showed that the temperature control points of the MPTL system could be quickly adjusted by the accumulator, and the external heat flux and the action of starting up and powering off of the heat source had little influence on the temperature of the evaporators. The cooling capacity was provided by the temperature difference between the subcooling liquid entering the capillary tube and the liquid phase in the accumulator. During the phase transition in the main loop, the mass transfer behaviors between accumulator and the main loop gave rise to the pressure-drop oscillations.

     

  • loading
  • [1]
    GREGORY T H, ABEL J, MANDI J. Thermal design considerations of the hubble space telescope (HST) science instrument control and data handler (SI C&DH-2) : AIAA 2010-6055[R]. Reston: AIAA, 2010.
    [2]
    李春林. 空间光学遥感器热控技术研究[J]. 宇航学报, 2014, 35(8): 863-870.

    LI C L. Research on space optical remote sensor thermal control technique[J]. Journal of Astronautics, 2014, 35(8): 863-870(in Chinese).
    [3]
    VAN ES J, VAN GERNER H J, VAN BENTHEM R C. Component developments in Europe for mechanically pumped loop systems (MPLs) for cooling applications in space[C]//46th International Conference on Environmental Systems, 2016: ICES-2016-196.
    [4]
    VAN ES J, PAUW A, VAN DONK G, et al. AMS02 tracker thermal control cooling system test results of the AMS02 thermal vacuum test in the ISS at ESA ESTEC : AIAA-2012-3577[R]. Reston: AIAA, 2012.
    [5]
    VAN ES J, PAUW A, VAN GERNER H J, et al. AMS02 tracker thermal control cooling system commissioning and operational results: AIAA-2013-3389[R]. Reston: AIAA, 2013.
    [6]
    于新刚, 徐侃, 苗建印, 等. 高热流散热泵驱两相流体回路设计及飞行验证[J]. 宇航学报, 2017, 38(2): 192-197.

    YU X G, XU K, MIAO J Y, et al. Design and on-board validation of pumped two-phase fluid loop for high heat flux removal[J]. Journal of Astronautics, 2017, 38(2): 192-197(in Chinese).
    [7]
    王镇锐, 张兴斌, 温世喆, 等. 结合TEC的泵驱两相温控系统的空间应用[J]. 宇航学报, 2018, 39(10): 1176-1184. doi: 10.3873/j.issn.1000-1328.2018.10.014

    WANG Z R, ZHANG X B, WEN S Z, et al. Space applications of pumped two-phase temperature control system combined with TEC[J]. Journal of Astronautics, 2018, 39(10): 1176-1184(in Chinese). doi: 10.3873/j.issn.1000-1328.2018.10.014
    [8]
    刘杰. 航天机械泵驱动两相流冷却环路循环特性的研究[D]. 上海: 上海交通大学, 2008.

    LIU J. Investigations on running characteristics of the mechanically pumped cooling loop for space applications[D]. Shanghai: Shanghai Jiaotong University, 2008(in Chinese).
    [9]
    孙西辉. 机械泵驱动CO2两相流体回路稳定性研究[D]. 广州: 中山大学, 2010.

    SUN X H. Stabilities research of the mechanically pumped two-phase CO2 loop[D]. Guangzhou: Sun Yat-sen University, 2010(in Chinese).
    [10]
    刘长鑫, 张济民, 徐涛, 等. 泵驱动两相流体回路流量漂移现象的试验研究 [J]. 上海航天, 2017, 34(4): 125-132.

    LIU C X, ZHANG J M, XU T, et al. Experimental research on flow excursion of mechanically pumped two-phase loop[J]. Aerospace Shanghai, 2017, 34(4): 125-132(in Chinese).
    [11]
    赵振明, 孟庆亮, 张焕冬, 等. CCD器件用机械泵驱动两相流体回路仿真与试验[J]. 北京航空航天大学学报, 2019, 45(5): 893-901. doi: 10.13700/j.bh.1001-5965.2018.0519

    ZHAO Z M, MENG Q L, ZHANG H D, et al. Simulation and experimental study of mechanically pumped two-phase loop for CCD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 893-901(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0519
    [12]
    黄臻成. 航天热控用机械驱动两相系统的数值模拟及控温特性分析[D]. 广州: 中山大学, 2008.

    HUANG Z C. Numerical simulation and thermal control characteristic of the space mechanically pumped two-phase CO2 loop[D]. Guangzhou: Sun Yat-sen University, 2008(in Chinese).
    [13]
    袁俊飞, 唐大伟, 曹宏章. 泵驱动相变冷却系统中储液器压力响应特性[J]. 航空动力学报, 2015, 30(10): 2384-2390. doi: 10.13224/j.cnki.jasp.2015.10.012

    YUAN J F, TANG D W, CAO H Z. Response characteristics of accumulator pressure in pumped phase-change cooling system[J]. Journal of Aerospace Power, 2015, 30(10): 2384-2390(in Chinese). doi: 10.13224/j.cnki.jasp.2015.10.012
    [14]
    VAN GERNER H J, BRAAKSMA N. Transient modelling of pumped two-phase cooling systems: comparison between experiment and simulation[C]//46th International Conference on Environmental Systems, 2016: ICES-2016-004.
    [15]
    VAN GERNER H J, BOLDER R, VAN ES J. Transient modelling of pumped two-phase cooling systems: comparison between experiment and simulation with R134a[C]//47th International Conference on Environmental Systems, 2017: ICES-2017-037.
    [16]
    孟庆亮, 张焕冬, 赵振明. 两相控温型储液器进出流量的瞬态数值模拟[J]. 北京航空航天大学学报, 2019, 45(11): 2160-2169.

    MENG Q L, ZHANG H D, ZHAO Z M. Transient numerical simulations of flow rate into and out of two-phase temperature control accumulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2160-2169(in Chinese).
    [17]
    孟庆亮, 周振华, 赵振明. 用于微重力下两相控温型储液器性能研究[J]. 工程热物理学报, 2021, 42(7): 1770-1776.

    MENG Q L, ZHOU Z H, ZHAO Z M. Performance study of two-phase thermal-controlled accumulator for microgravity environment[J]. Journal of. Engineering Thermophysics, 2021, 42(7): 1770-1776(in Chinese).
    [18]
    杜王芳, 乐述文, 赵建福, 等. 多相热流体系统中的重力无关性准则[J]. 河北水利电力学院学报, 2019, 29(2): 1-7.

    DU W F, YUE S W, ZHAO J F, et al. Criteria of gravity independence in multiphase thermal fluid system[J]. Journal of Hebei University of Water Resources and Electric Engineering, 2019, 29(2): 1-7(in Chinese).
    [19]
    LEMMON E W, HUBER M L, MCLINDEN M O. NIST standard reference database 23. NIST reference fluid thermodynamic and transport properties database (REFPROP). version 8.0. Standard reference data[Z]. Gaithersburg: NIST, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(3)

    Article Metrics

    Article views(466) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return