Volume 49 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0271
Citation: MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0271

Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals

doi: 10.13700/j.bh.1001-5965.2021.0271
Funds:  The Postdoctoral Innovative Talents Support Program (BX20200039)
More Information
  • Corresponding author: E-mail:wangf.19@163.com
  • Received Date: 25 May 2021
  • Accepted Date: 22 Aug 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 14 Sep 2021
  • Although passive radar based on global navigation satellite system (GNSS) signals has received domestic and international attention owing to its advantages such as the availability of multiple satellites, global coverage, and convenience of time synchronization, it is difficult to meet the actual detection requirements due to the movement of satellites and the limited target detection performance of a single satellite. The bistatic angle calculation procedure is described in accordance with the geometric configuration, and the theoretical expression of target detection probability is derived after analyzing the relationship between target radar cross section (RCS) and bistatic angle, and the connection between detection time and target maximum detection range. On these grounds, the target detection probability of passive radar based on GPS L5 signal under the detection pattern of single-satellite, multi-satellites fusion and forward-backward cooperation is evaluated. The simulation results show that the effective probability of detection under single-satellite forward or backward mode is less than 1%, which has an effective promotion to 25% under the detection pattern of multi-satellites fusion with forward-backward cooperation. Furthermore, the continuous detection method is adopted to change the irradiation direction of the receiving antenna to detect the target. In the forward and backward cooperative multi-source fusion detection mode, the effective detection time coverage is up to 98.96%, and the all-time effective detection is basically realized.

     

  • loading
  • [1]
    李刚. 新体制雷达及其关键技术[J]. 电子技术与软件工程, 2019(15): 60-62.

    LI G. New system radar and its key technology[J]. Electronic Technology & Software Engineering, 2019(15): 60-62(in Chinese).
    [2]
    朱庆明, 吴曼青. 一种新型无源探测与跟踪雷达系统——“沉默哨兵”[J]. 现代电子, 2000(1): 1-6.

    ZHU Q M, WU M Q, Silent sentry: A novel passive detecting and tracking radar system[J]. Modern Electronics, 2000(1): 1-6(in Chinese).
    [3]
    万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939-958. doi: 10.12000/JR20143

    WAN X R, YI J X, ZHAN W J, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939-958(in Chinese). doi: 10.12000/JR20143
    [4]
    ZAIMBASHI A. Broadband target detection algorithm in FM-based passive bistatic radar systems[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1485-1499.
    [5]
    RAJA ABDULLAH R S A, ALHAJI MUSA S, ABDUL RASHID N E, et al. Passive forward-scattering radar using digital video broadcasting satellite signal for drone detection[J]. Remote Sensing, 2020, 12(18): 3075. doi: 10.3390/rs12183075
    [6]
    ZEMMARI R, DAUN M, FELDMANN M, et al. Maritime surveillance with GSM passive radar: detection and tracking of small agile targets[C]//International Radar Symposium. Piscataway: IEEE Press, 2013: 245-251.
    [7]
    ILIOUDIS C, CLEMENTE C, SORAGHAN J. GNSS-based passive UAV monitoring: A feasibility study[J]. IET Radar, Sonar & Navigation, 2020, 14(4): 516-524.
    [8]
    胡程, 刘长江, 曾涛. 双基地前向散射雷达探测与成像[J]. 雷达学报, 2016, 5(3): 229-243.

    HU C, LIU C J, ZENG T. Bistatic forward scattering radar detection and imaging[J]. Journal of Radars, 2016, 5(3): 229-243(in Chinese).
    [9]
    CHERNIAKOV M, ABDULLAH R S A R, JANČOVIČ P, et al. Automatic ground target classification using forward scattering radar[J]. IEE Proceedings: Radar, Sonar and Navigation, 2006, 153(5): 427-437. doi: 10.1049/ip-rsn:20050028
    [10]
    SIZOV V, CHERNIAKOV M, ANTONIOU M. Forward scattering radar power budget analysis for ground targets[J]. IET Radar, Sonar & Navigation, 2007, 1(6): 437-446.
    [11]
    HRISTOV S, DANIEL L, HOARE E, et al. Target shadow profile reconstruction in ground-based forward scatter radar[C]//IEEE Radar Conference. Piscataway: IEEE Press, 2015: 846-851.
    [12]
    GASHINOVA M, DANIEL L, SIZOV V, et al. Phenomenology of Doppler forward scatter radar for surface targets observation[J]. IET Radar, Sonar & Navigation, 2013, 7(4): 422-432.
    [13]
    MARRA M, DE LUCA A, HRISTOV S, et al. New algorithm for signal detection in passive FSR[C]//IEEE Radar Conference. Piscataway: IEEE Press, 2015: 218-223.
    [14]
    CONTU M, DE LUCA A, HRISTOV S, et al. Passive multifrequency forward-scatter radar measurements of airborne targets using broadcasting signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1067-1087. doi: 10.1109/TAES.2017.2649198
    [15]
    DE LUCA A, DANIEL L, GASHINOVA M, et al. Target parameter estimation in moving transmitter moving receiver forward scatter radar[C]//International Radar Symposium. Piscataway: IEEE Press, 2017: 1-7.
    [16]
    胡程, 龙腾, 曾涛, 等. 前向散射雷达地表杂波物理建模及频谱扩展分析[J]. 中国科学:信息科学, 2010, 40(12): 1646-1659.

    HU C, LONG T, ZENG T, et al. Physical modeling and spectrum spread analysis of ground clutter in forward scattering radar[J]. Scientia Sinica(Informationis), 2010, 40(12): 1646-1659(in Chinese).
    [17]
    胡程, 刘长江, 曾涛, 等. 双基地前向散射雷达杂波分析与模拟方法[J]. 信号处理, 2013, 29(3): 293-303. doi: 10.3969/j.issn.1003-0530.2013.03.002

    HU C, LIU C J, ZENG T, et al. Statistical analysis and simulation method of forward scattering clutter in bistatic radar[J]. Journal of Signal Processing, 2013, 29(3): 293-303(in Chinese). doi: 10.3969/j.issn.1003-0530.2013.03.002
    [18]
    李文海, 董锡超, 胡程. 前向散射雷达海面目标探测信号建模与分析[J]. 信号处理, 2019, 35(6): 994-1001. doi: 10.16798/j.issn.1003-0530.2019.06.009

    LI W H, DONG X C, HU C. Signal modeling and analysis of forward scatter radar in sea surface target detection[J]. Journal of Signal Processing, 2019, 35(6): 994-1001(in Chinese). doi: 10.16798/j.issn.1003-0530.2019.06.009
    [19]
    GLASER J I. Bistatic RCS of complex objects near forward scatter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, 21(1): 70-78. doi: 10.1109/TAES.1985.310540
    [20]
    马骉. 雷达散射截面积的特征提取算法研究与电路设计[D]. 西安: 西安电子科技大学, 2017: 8-10.

    MA B. Algorithm research and circuit design on feature extraction of radar cross section[D]. Xi’an: Xidian University, 2017: 8-10(in Chinese).
    [21]
    伍岳, 罗和平, 邱蕾. L5载波的信号质量分析[J]. 测绘工程, 2014, 23(12): 8-11. doi: 10.3969/j.issn.1006-7949.2014.12.003

    WU Y, LUO H P, QIU L. Quality analysis of GPS L5 signal[J]. Engineering of Surveying and Mapping, 2014, 23(12): 8-11(in Chinese). doi: 10.3969/j.issn.1006-7949.2014.12.003
    [22]
    BEHAR V, KABAKCHIEV C. Detectability of air targets using bistatic radar based on GPS L5 signals[C]//International Radar Symposium. Piscataway: IEEE Press, 2011 : 212-217.
    [23]
    MIKHAIL C. 双基地雷达: 一项新兴技术[M]. 陈筠力, 译. 北京: 中国宇航出版社, 2015: 385.

    MIKHAIL C. Bistatic radar: Emerging technology[M]. CHEN J L, translated. Beijing: China Astronautic Publishing House, 2015: 385(in Chinese).
    [24]
    BASSEM R M, ATEF Z E. 雷达系统设计MATLAB仿真[M]. 朱国富, 黄晓涛, 黎向阳, 等译. 北京: 电子工业出版社, 2016: 49-65.

    BASSEM R M, ATEF Z E. MATLAB simulations for radar systems design[M]. ZHU G F, HUANG X T, LI X Y, et al, translated. Beijing: Publishing House of Electronics Industry, 2016: 49-65(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(327) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return