Volume 49 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LI J,ZHANG R C,PAN C Y,et al. Micro immune optimization algorithm for single objective probabilistic constrained programming[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):525-537 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0288
Citation: LI J,ZHANG R C,PAN C Y,et al. Micro immune optimization algorithm for single objective probabilistic constrained programming[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):525-537 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0288

Micro immune optimization algorithm for single objective probabilistic constrained programming

doi: 10.13700/j.bh.1001-5965.2021.0288
Funds:  Science and Technology Program of Guizhou Province of China (QKHJC [2020] 1Y423, QKHJC [2019] 1178); Project of Guizhou Big Data Application Engineering Research Center in Guizhou Province (QJHKY Zi [2017] 022); Youth Science and Technology Talent Development Project of Education Department in Guizhou Province (QJHKY Zi [2018] 276, QJHKY Zi [2018] 429)
More Information
  • Corresponding author: E-mail:zhangrenchong1990@163.com
  • Received Date: 02 Jun 2021
  • Accepted Date: 24 Sep 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 12 Oct 2021
  • An immune optimization algorithm with a small population is proposed to solve a single objective probability constrained programming with no prior random distribution information. In the design of the algorithm, we develop an evolutionary framework with a micro population inspired by danger theory. Based on the amplitude of error of the estimated value, two approaches are proposed to estimate the individual’s objective values and each chance constraint’s probability respectively. According to the superior and inferior relationships among individuals, the population was divided into three types of sub-population for co-evolution. A version of individual life cycle is constructed, while adaptive crossover probability, adaptive mutation probability and adaptive mutation strategy as well as crossover strategy are designed to promote effective information exchange among the above sub-populations to co-evolve individuals in different directions. The results of numerical experiments show that the proposed algorithm has good search efficiency, search effect and noise reduction ability, and has certain competitiveness and application potential.

     

  • loading
  • [1]
    CHEN Y, LI Y, SUN B, et al. A chance-constrained programming approach for a zinc hydrometallurgy blending problem under uncertainty[J]. Computers & Chemical Engineering, 2020, 140: 106893.
    [2]
    卢福强, 陈伟东, 毕华玲, 等. 考虑随机需求和多种运输方式的第四方物流路径问题[J]. 计算机集成制造系统, 2020, 26(10): 2864-2876. doi: 10.13196/j.cims.2020.10.025

    LU F Q, CHEN W D, BI H L, et al. Fourth party logistics routing problem considering stochastic demand and multiple transportation modes[J]. Computer Integrated Manufacturing Systems, 2020, 26(10): 2864-2876(in Chinese). doi: 10.13196/j.cims.2020.10.025
    [3]
    LONG J, SUN Z, PARDALOS P M, et al. A robust dynamic scheduling approach based on release time series forecasting for the steelmaking-continuous casting production[J]. Applied Soft Computing, 2020, 92: 106271. doi: 10.1016/j.asoc.2020.106271
    [4]
    LONG J, SUN Z, HONG Y, et al. Robust dynamic scheduling with uncertain release time for the steelmaking-continuous casting production[C]//2018 International Conference on Sensing, Diagnostics, Prognostics, and Control. Piscataway: IEEE Press, 2018: 531-536.
    [5]
    SONG H, DONG M, HAN R, et al. Stochastic programming-based fault diagnosis in power systems under imperfect and incomplete information[J]. Energies, 2018, 11(10): 2565. doi: 10.3390/en11102565
    [6]
    HONG Z, ZHANG Q, GONG T, et al. Peak load regulation and cost optimization for microgrids by installing a heat storage tank and a portable energy system[J]. Applied Sciences, 2018, 8(4): 567. doi: 10.3390/app8040567
    [7]
    ZHANG H, HA M, ZHAO H, et al. Inexact multistage stochastic chance constrained programming model for water resources management under uncertainties[J]. Scientific Programming, 2017, 2017: 1-14.
    [8]
    AHMED S. Convex relaxations of chance constrained optimization problems[J]. Optimization Letters, 2014, 8(1): 1-12. doi: 10.1007/s11590-013-0624-7
    [9]
    SUN X L, BAI X D, ZHENG X J. A survey on probabilistically constrained optimization problems[J]. Operations Research Transactions, 2012, 16(3): 65-73.
    [10]
    刘宝碇, 赵瑞清. 随机规划与模糊规划[M]. 北京: 清华大学出版社, 1998: 79-87.

    LIU B D, ZHAO R Q. Stochastic programming and fuzz programming[M]. Beijing: Tsinghua University Press, 1998: 79-87(in Chinese).
    [11]
    YANG L, YANG Z, LI G, et al. Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1565-1575. doi: 10.1109/TIE.2018.2840498
    [12]
    HOMEN-DE-MELLO T, BAYRAKSAN G. Monte Carlo sampling-based methods for stochastic optimization[J]. Surveys in Operations Research and Management Science, 2014, 19(1): 56-85. doi: 10.1016/j.sorms.2014.05.001
    [13]
    ZHANG Z H. Noisy immune optimization for chance-constrained programming problems[J]. Applied Mechanics and Materials, 2011, 48-49: 740-744. doi: 10.4028/www.scientific.net/AMM.48-49.740
    [14]
    ZHANG Z H, WANG L, LIAO M. Adaptive sampling immune algorithm solving joint chance-constrained programming[J]. Journal of Control Theory and Applications, 2013, 11(2): 237-246. doi: 10.1007/s11768-013-1186-z
    [15]
    YANG K, ZHANG Z H. Adaptive sampling detection based immune optimization approach and its application to chance constrained programming[M]//SUN H, YANG C Y, LIN C W, et al. Genetic and evolutionary computing. Berlin: Springer International Publishing, 2015: 19-28.
    [16]
    ZHANG Z H, LI L, ZHANG R C. Danger theory based micro immune optimization algorithm solving probabilistic constrained optimization[C]//2017 2nd IEEE International Conference on Computational Intelligence and Applications. Piscataway: IEEE Press, 2017: 103-107.
    [17]
    ZHANG Z H, ZHANG R C. Danger theory inspired micro-population immune optimization for probabilistic constrained programming[J]. Evolving Systems, 2020, 11(2): 333-348. doi: 10.1007/s12530-019-09277-6
    [18]
    张著洪, 张仁崇. 求解概率优化问题的微种群免疫优化算法[J]. 北京航空航天大学学报, 2016, 42(9): 1785-1794. doi: 10.13700/j.bh.1001-5965.2015.0563

    ZHANG Z H, ZHANG R C. Micro immune optimization algorithm for solving probabilistic optimization problems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1785-1794(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0563
    [19]
    张仁崇, 张著洪. 非线性多目标概率约束规划免疫优化算法[J]. 北京航空航天大学学报, 2020, 46(5): 900-914. doi: 10.13700/j.bh.1001-5965.2019.0350

    ZHANG R C, ZHANG Z H. Immune optimization algorithm for nonlinear multi-objective probabilistic constrained programming[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 900-914(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0350
    [20]
    张仁崇, 潘春燕, 武星, 等. 非线性多目标概率优化问题的自适应采样免疫优化算法[J]. 电子学报, 2021, 49(4): 647-660. doi: 10.12263/DZXB.20200171

    ZHANG R C, PAN C Y, WU X, et al. Adaptive sampling immune optimization algorithm for nonlinear multi-objective probabilistic optimization problems[J]. Acta Electronica Sinica, 2021, 49(4): 647-660(in Chinese). doi: 10.12263/DZXB.20200171
    [21]
    LIU B D. Theory and practice of uncertain programming[M]. 3rd ed. Berlin: Springer International Publishing, 2009: 50-53.
    [22]
    沈依婷, 张菁, 武鹏, 等. 含电动汽车的配电网双重不确定性网架规划方法[J]. 中国电力, 2020, 53(4): 139-146.

    SHEN Y T, ZHANG J, WU P, et al. Bi-uncertainty network frame planning method for distribution network with electric vehicles[J]. Electric Power, 2020, 53(4): 139-146(in Chinese).
    [23]
    XIAO N. An algorithm for solving stochastic chance-constrained programming problem[J]. Advanced Materials Research, 2014, 912: 1138-1141.
    [24]
    HUANG D, XIE L, WU Z. Dynamic economic dispatch for microgrid based on the chance-constrained programming[J]. Journal of Electrical Engineering & Technology, 2017, 12(3): 1064-1072.
    [25]
    李鹏, 蔡永青, 韩肖清, 等. 计及随机模糊双重不确定性的交直流混合微网优化运行[J]. 高电压技术, 2020, 46(7): 2269-2279. doi: 10.13336/j.1003-6520.hve.20200619001

    LI P, CAI Y Q, HAN X Q, et al. Optimization operation of AC/DC hybrid microgrid considering random fuzzy double uncertainties[J]. High Voltage Engineering, 2020, 46(7): 2269-2279(in Chinese). doi: 10.13336/j.1003-6520.hve.20200619001
    [26]
    德格吉日夫, 谭忠富, 李梦露, 等. 考虑不确定性的风储电站参与电力现货市场竞价策略[J]. 电网技术, 2019, 43(8): 2799-2807. doi: 10.13335/j.1000-3673.pst.2019.0547

    DE G J R F, TAN Z F, LI M L, et al. Bidding strategy of wind-storage power plant participation in electricity spot market considering uncertainty[J]. Power System Technology, 2019, 43(8): 2799-2807(in Chinese). doi: 10.13335/j.1000-3673.pst.2019.0547
    [27]
    马丽叶, 王志强, 陆肖宇, 等. 基于机会约束规划的风-火-蓄联合系统优化调度[J]. 电网技术, 2019, 43(9): 3311-3320.

    MA L Y, WANG Z Q, LU X Y, et al. Optimal scheduling of combined wind-thermo-storage system based on chance constrained programming[J]. Power System Technology, 2019, 43(9): 3311-3320(in Chinese).
    [28]
    ZHAO Q, YANG R, DUAN F. An immune clonal hybrid algorithm for solving stochastic chance-constrained programming[J]. Journal of Computational Information Systems, 2012, 8(20): 8295-8302.
    [29]
    韩畅, 梁博淼, 林振智, 等. 防灾应急电源优化调度的机会约束规划方法[J]. 电力自动化设备, 2018, 38(3): 147-154. doi: 10.16081/j.issn.1006-6047.2018.03.020

    HAN C, LIANG B M, LIN Z Z, et al. Chance-constrained programming method for optimal scheduling of emergency power source[J]. Electric Power Automation Equipment, 2018, 38(3): 147-154(in Chinese). doi: 10.16081/j.issn.1006-6047.2018.03.020
    [30]
    贾伯岩, 马天祥, 张智远, 等. 计及不确定性的含分布式发电并网的配电网故障区段定位方法[J]. 电力系统保护与控制, 2020, 48(14): 35-42. doi: 10.19783/j.cnki.pspc.191002

    JIA B Y, MA T X, ZHANG Z Y, et al. Fault section location method for distribution networks with distributed generation and grid connection considering uncertainty[J]. Power System Protection and Control, 2020, 48(14): 35-42(in Chinese). doi: 10.19783/j.cnki.pspc.191002
    [31]
    茆诗松, 程依明, 濮晓龙, 等. 概率论与数理统计教程[M]. 北京: 高等教育出版社, 2004: 226-237.

    MAO S S, CHENG Y M, PU X L, et al. Probability theory and mathematical statistics course[M]. Beijing: Higher Education Press, 2004: 226-237(Chinese).
    [32]
    MATZINGER P. Tolerance, danger, and the extended family[J]. Annual Review of Immunology, 1994, 12(1): 991-1045. doi: 10.1146/annurev.iy.12.040194.005015
    [33]
    POOJARI C A, VARGHESE B. Genetic algorithm based technique for solving chance constrained problems[J]. European Journal of Operational Research, 2008, 185(3): 1128-1154. doi: 10.1016/j.ejor.2006.06.045
    [34]
    WANG Y, WANG B C, LI H X, et al. Incorporating objective function information into the feasibility rule for constrained evolutionary optimization[J]. IEEE Transactions on Cybernetics, 2016, 46(12): 2938-2952. doi: 10.1109/TCYB.2015.2493239
    [35]
    WANG B C, LI H X, LI J P, et al. Composite differential evolution for constrained evolutionary optimization[J]. IEEE Transactions on Systems Man and Cybernetics Systems, 2018, 49(7): 1482-1495.
    [36]
    SALEHINEJAD H, RAHNAMAYAN S, TIZHOOSH H R. Micro-differential evolution: diversity enhancement and a comparative study[J]. Applied Soft Computing, 2017, 52: 812-833. doi: 10.1016/j.asoc.2016.09.042
    [37]
    YASUI T, SUGISAKA J, HIRAYAMA K. Structural optimization of silica-based 2×2 multimode interference coupler using a real-coded micro-genetic algorithm[J]. Progress in Electromagnetics Research, 2017, 55: 169-178. doi: 10.2528/PIERM17012204
    [38]
    CAMERO A, ARELLANO-VERDEJO J, ALBA E. Road map partitioning for routing by using a micro steady state evolutionary algorithm[J]. Engineering Applications of Artificial Intelligence, 2018, 71: 155-165. doi: 10.1016/j.engappai.2018.02.016
    [39]
    VARGHESE B, POOJARI C A. Genetic algorithm based technique for solving chance constrained problems arising in risk management[R]. CARISMA Technical Report, 2004: 1-49.
    [40]
    程晓娟, 韩庆兰, 全春光. 不确定条件下机械产品设计方案费效权衡优化[J]. 计算机集成制造系统, 2015, 21(8): 1988-1994. doi: 10.13196/j.cims.2015.08.003

    CHENG X J, HAN Q L, QUAN C G. Cost-effective trade-off of mechanical product design scheme under uncertainty[J]. Computer Integrated Manufacturing System, 2015, 21(8): 1988-1994(in Chinese). doi: 10.13196/j.cims.2015.08.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views(306) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return