Volume 49 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
CHEN C,ZHAO W. Remote sensing target detection based on dynanic feature selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):702-709 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0300
Citation: CHEN C,ZHAO W. Remote sensing target detection based on dynanic feature selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):702-709 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0300

Remote sensing target detection based on dynanic feature selection

doi: 10.13700/j.bh.1001-5965.2021.0300
More Information
  • Corresponding author: E-mail:zhao29wei@263.net
  • Received Date: 04 Jun 2021
  • Accepted Date: 13 Aug 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 09 Sep 2021
  • In the field of remote sensing image target detection, there still are challenges in oriented object detection. Convolutional neural network is subject to a fixed spatial structure when extracting information, and sampling locations cannot focus on objects. The scale of the remote sensing image varies greatly, and different objects require receptive fields of different scales to obtain feature map. Meanwhile, feature map with a single-scale receptive field cannot contain all effective information. In response to the first problem, deformable alignment convolution was proposed, which can first adjust the sampling locations according to the region of interest, and further learn slight offsets according to feature map, so that sampling locations can focus on objects and realize dynamic feature selection. For the second question, receptive field adaptive module based on deformable alignment convolution was proposed to fuse feature map with receptive fields of different scales and adaptively adjust the receptive field of neurons. Extensive experiments on public datasets showed that this method can improve the accuracy of remote sensing image target detection.

     

  • loading
  • [1]
    王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9): 1029-1039.

    WANG Y Q, MA L, TIAN Y. State-of-the-art of ship detection and recognition in optical remotely sensed imagery[J]. Acta Automatica Sinica, 2011, 37(9): 1029-1039(in Chinese).
    [2]
    XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3974-3983.
    [3]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic seg-mentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [4]
    GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [5]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [6]
    HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2961-2969.
    [7]
    DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 764-773.
    [8]
    DING J, XUE N, LONG Y, et al. Learning RoI Transformer for oriented object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 2849-2858.
    [9]
    LIU Z K, HU J G, WENG L B, et al. Rotated region based CNN for ship detection[C]//2017 IEEE International Conference on Image Processing(ICIP). Piscataway: IEEE Press, 2017: 900-904.
    [10]
    MA J Q, SHAO W Y, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111-3122. doi: 10.1109/TMM.2018.2818020
    [11]
    HAN J M, DING J, LI J, et al. Align deep features for oriented object detection[EB/OL]. (2021-07-12)[2021-07-12].https://arxiv. org/abs/2008.09397.
    [12]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2117-2125.
    [13]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2980-2988.
    [14]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [15]
    LI Y H, CHEN Y T, WANG N Y, et al. Scale-aware trident networks for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 6054-6063.
    [16]
    PAN X J, REN Y Q, SHENG K K, et al. Dynamic refinement network for oriented and densely packed object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 11207-11216.
    [17]
    IOFFE S , SZEGEDY C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015: 448-456.
    [18]
    TAN M X, PANG R M, LE Q V. EfficientDet: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 10781-10790.
    [19]
    PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library[EB/OL]. (2019-12-03)[2021-06-01].https://arxiv. org/abs/11912.01703.
    [20]
    ZHANG G J, LU S J, ZHANG W. CAD-Net: A context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10015-10024. doi: 10.1109/TGRS.2019.2930982
    [21]
    YANG X, YANG J R, YAN J C, et al. SCRDet: Towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 8232-8241.
    [22]
    YANG X, LIU Q Q, YAN J C, et al. R3Det: Refined single-stage detector with feature refinement for rotating object[EB/OL]. (2020-12-08)[202-06-01].https://arxiv.org/abs/1908.05612v1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(401) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return