Volume 49 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LI B,WANG C,DING X Y,et al. Surface defect detection algorithm based on improved YOLOv4[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):710-717 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0301
Citation: LI B,WANG C,DING X Y,et al. Surface defect detection algorithm based on improved YOLOv4[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):710-717 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0301

Surface defect detection algorithm based on improved YOLOv4

doi: 10.13700/j.bh.1001-5965.2021.0301
More Information
  • Corresponding author: E-mail:warrant_74@126.com
  • Received Date: 04 Jun 2021
  • Accepted Date: 11 Oct 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 10 Mar 2023
  • In order to enhance the accuracy and speed of surface defect detection of aeroengine components, an improved YOLOv4 algorithm is proposed for intelligent detection. Firstly, shallow features and deep features were integrated into the path aggregation network (PANet) to improve the feature detection scale, and the bottom-up path augmentation structure was removed to increase the accuracy of small target detection and the overall detection speed. Then, according to the numbers of various defects, the balance parameter of the focal loss was optimized, and a weight factor was added to adjust the loss weight of various defects. The improved focal loss was used to replace the cross-entropy loss function in the classification error, thus reducing the impact of imbalanced samples and hard and easy samples on the detection accuracy. The experimental results show that the mean average precision (mAP) of the improved YOLOv4 on the test set is 90.10%, which is 2.17% higher than that of the traditional YOLOv4, and the detection speed is 24.82 fps, which is increased by 1.58 fps. The detection accuracy is also higher than other algorithms including single shot multibox detector (SSD), EfficientDet, YOLOv3 and YOLOv4-Tiny.

     

  • loading
  • [1]
    李华. 基于孔探图像分析的航空发动机故障诊断专家系统研究[D]. 南京: 南京航空航天大学, 2015.

    LI H. Research on aeroengine fault diagnosis expert system based on endoscopic image analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [2]
    关玉璞, 陈伟, 高德平. 航空发动机叶片外物损伤研究现状[J]. 航空学报, 2007, 28(4): 851-857. doi: 10.3321/j.issn:1000-6893.2007.04.014

    GUAN Y P, CHEN W, GAO D P. Present status of investigation of foreign object damage to blade in aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 851-857(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.04.014
    [3]
    何嘉辉, 张栋善, 赵成, 等. 航空发动机叶片裂纹检测技术及应用分析[J]. 内燃机与配件, 2020(15): 151-152. doi: 10.19475/j.cnki.issn1674-957x.2020.15.065

    HE J H, ZHANG D S, ZHAO C, et al. Detection technology and application analysis of aero-engine blade crack[J]. Internal Combustion Engine & Parts, 2020(15): 151-152(in Chinese). doi: 10.19475/j.cnki.issn1674-957x.2020.15.065
    [4]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Proceedings of European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [5]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [6]
    REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [7]
    REDMON J, FARHADI A. YOLOv3: An incremental improvement[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 1804-0276.
    [8]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 10934.
    [9]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
    [10]
    DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 379-387.
    [11]
    HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2980-2988.
    [12]
    王玺坤, 姜宏旭, 林珂玉. 基于改进型YOLO算法的遥感图像舰船检测[J]. 北京航空航天大学学报, 2020, 46(6): 1184-1191. doi: 10.13700/j.bh.1001-5965.2019.0394

    WANG X K, JIANG H X, LIN K Y. Remote sensing image ship detection based on modified YOLO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1184-1191(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0394
    [13]
    陈科山, 郝宇, 何泓波, 等. 基于R-D SSD模型航空发动机安装工位检测算法[J]. 北京航空航天大学学报, 2021, 47(4): 682-689.

    CHEN K S, HAO Y, HE H B, et al. Detection algorithm of aeroengine installation station based on R-D SSD model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 682-689(in Chinese).
    [14]
    旷可嘉. 深度学习及其在航空发动机缺陷检测中的应用研究[D]. 广州: 华南理工大学, 2017.

    KUANG K J. Research on deep learning and its application on the defects detection for aero engine[D]. Guangzhou: South China University of Technology, 2017(in Chinese).
    [15]
    李浩. 基于图像识别的航空发动机叶片裂纹检测研究[D]. 成都: 电子科技大学, 2019.

    LI H. Research on the blade crack detection of aero-engine based on image recognition[D]. Chengdu: University of Electronic Science and Technology of China, 2019(in Chinese).
    [16]
    陈为, 梁晨红. 基于改进SSD的航空发动机目标缺陷检测[J]. 控制工程, 2021, 28(12): 2329-2335. doi: 10.14107/j.cnki.kzgc.cpcc2019-063

    CHEN W, LIANG C H. Aeroengine target defect detection based on improved SSD[J]. Control Engineering of China, 2021, 28(12): 2329-2335(in Chinese). doi: 10.14107/j.cnki.kzgc.cpcc2019-063
    [17]
    WANG C Y, MARK L H Y, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2020: 1571-1580.
    [18]
    MISRA D. Mish: A self regularized non-monotonic neural activation function[EB/OL]. (2020-08-13) [2021-06-01]. https://arxiv.org/abs/1908.08681.
    [19]
    MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of Interational Conference on Machine learning, 2013: 1-6.
    [20]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition.[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [21]
    LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
    [22]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2117-2125.
    [23]
    YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: An advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 516-520.
    [24]
    REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 658-666.
    [25]
    ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7): 12993-13000.
    [26]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
    [27]
    TAN M X, PANG R M, LE Q V. EfficientDet: Scalable and efficient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 10778-10787.
    [28]
    TAN M X, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks [EB/OL].(2020-09-11) [2021-06-01]. https://arxiv.org/abs/1905.11946.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views(730) PDF downloads(184) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return