Volume 49 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Y H,LYU N,MIAO J C,et al. Improved intelligent detection algorithm for SPMA protocol channel state based on recurrent neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):735-744 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0309
Citation: ZHANG Y H,LYU N,MIAO J C,et al. Improved intelligent detection algorithm for SPMA protocol channel state based on recurrent neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):735-744 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0309

Improved intelligent detection algorithm for SPMA protocol channel state based on recurrent neural network

doi: 10.13700/j.bh.1001-5965.2021.0309
Funds:  National Natural Science Foundation of China (61703427); Natural Science Foundation of Shaanxi Province (2020JQ-483)
More Information
  • Corresponding author: E-mail:1105406986@qq.com
  • Received Date: 08 Jun 2021
  • Accepted Date: 29 Aug 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 14 Sep 2021
  • By connecting sensors and shooters, tactical target network technology (TTNT) can realize rapid detection, positioning and strike of time-sensitive targets in denial environments. To that end, real-time and reliable channel access is highly required for tactical information transmission. TTNT uses the statistical priority-based multiple access (SPMA) protocol, which periodically calculates the statistical average number of arrival traffic pulses, to estimate the current channel state and thus control the timing of tactical information access. However, methods based on statistical average are merely suitable for stationary traffic, and will lead to large error in channel state detection when the traffic is non-stationary. To solve this problem, the traffic prediction technology was adopted and an improved detection algorithm for SPMA protocol channel state based on recurrent neural network was proposed. Meanwhile, in order to accurately obtain the current channel state, the recurrent neural network was employed to learn the hidden characteristics of historical traffic data, and a traffic predictor was constructed to timely predict the number of traffic pulses arriving at an instant. Experiments showed that the results of communication state detection with our algorithm is more realistic, which can significantly reduce the false judgment rate of the channel state.

     

  • loading
  • [1]
    吕娜, 张岳彤, 陈柯帆, 等. 数据链理论与系统[M]. 2版. 北京: 电子工业出版社, 2018: 5-6.

    LV N, ZHANG Y T, CHEN K F, et al. Data link theory and system[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2018: 5-6(in Chinese).
    [2]
    黄振, 周永将. 美军网络中心战的重要元素——协同数据链[J]. 现代导航, 2017, 8(1): 70-73.

    HUANG Z, ZHOU Y J. Element of US army network centric warfare—Cooperative sata link[J]. Modern Navigation, 2017, 8(1): 70-73(in Chinese).
    [3]
    戴辉. 武器协同数据链发展需求[J]. 指挥信息系统与技术, 2011, 2(5): 11-14. doi: 10.3969/j.issn.1674-909X.2011.05.004

    DAI H. Development requirement of weapon cooperative data link[J]. Command Information System and Technology, 2011, 2(5): 11-14(in Chinese). doi: 10.3969/j.issn.1674-909X.2011.05.004
    [4]
    金荣, 张衡阳. 美军TTNT数据链发展应用现状[J]. 现代导航, 2014, 5(2): 154-156.

    JIN R, ZHANG H Y. Development situation of tactical targeting networks for US force[J]. Modern Navigation, 2014, 5(2): 154-156(in Chinese).
    [5]
    陈志辉, 李大双. 对美军下一代数据链TTNT数据链技术的分析与探讨[J]. 信息安全与通信保密, 2011(5): 76-79. doi: 10.3969/j.issn.1009-8054.2011.05.038

    CHEN Z H, LI D S. Analysis and exploration on tactical targeting network technology for the next generation tactical data link[J]. Information Security and Communications Privacy, 2011(5): 76-79(in Chinese). doi: 10.3969/j.issn.1009-8054.2011.05.038
    [6]
    HERDER J C , STEVENS J A. Method and architecture for TTNT symbol rate scaling modes: U. S. Patent 7, 839, 900[P]. 2010-11-23.
    [7]
    周礼明. 统计优先级无线多址接入访问技术研究[D]. 成都: 电子科技大学, 2019: 10-18.

    ZHOU L M. Research on statistical priority based multiple access[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 10-18(in Chinese).
    [8]
    李志林. 面向高时敏业务的统计优先级多址接入技术研究[D]. 南京: 南京航空航天大学, 2019: 17-20, 45-66.

    LI Z L. Research on statistical priority-based multiple access technology for high time-sensitive services[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 17-20, 45-66(in Chinese).
    [9]
    LIU J, PENG T, QUAN Q Y, et al. Performance analysis of the statistical priority-based multiple access[C]//3rd IEEE International Conference on Computer and Communications. Piscataway: IEEE Press, 2017: 30-35.
    [10]
    刘健. 基于优先级概率统计的多址接入协议研究[D]. 北京: 北京邮电大学, 2018: 19-23.

    LIU J. Performance analysis of the statistical priority-based multiple access[D]. Beijing: Beijing University of Posts and Telecommunication, 2018: 19-23(in Chinese).
    [11]
    王希洋. 基于统计优先级的数据链MAC协议研究[D]. 西安: 西安电子科技大学, 2017: 21-31.

    WANG X Y. Research on statistical priority-based MAC protocol for data link[D]. Xi’an: Xidian University, 2017: 21-31(in Chinese).
    [12]
    吴琼. 基于统计优先级的链路层协议性能仿真与研究[D]. 北京: 北京理工大学, 2014: 17-22.

    WU Q. Performance simulation and research of the statistical priority-based multiple access[D]. Beijing: Beijing Institute of Technology, 2014: 17-22(in Chinese).
    [13]
    王玉龙. TTNT数据链战术数据链媒体接入控制协议关键技术研究[D]. 北京: 北京交通大学, 2018: 21-36.

    WANG Y L. Research on key technologies of MAC protocol in TTNT tactical data link[D]. Beijing: Beijing Jiaotong University, 2018: 21-36(in Chinese).
    [14]
    郑文庆, 金虎, 郭建蓬, 等. 一种新型数据链MAC协议及其信道占用研究[J]. 计算机仿真, 2019, 36(7): 148-152. doi: 10.3969/j.issn.1006-9348.2019.07.030

    ZHENG W Q, JIN H, GUO J P, et al. Research on a new data link MAC protocol and its channel occupancy[J]. Computer Simulation, 2019, 36(7): 148-152(in Chinese). doi: 10.3969/j.issn.1006-9348.2019.07.030
    [15]
    程文驰, 张施施. 一种数据链动态门限统计优先级多址接入协议[J]. 指挥与控制学报, 2020, 6(1): 75-80. doi: 10.3969/j.issn.2096-0204.2020.01.0075

    CHENG W C, ZHANG S S. A data link-oriented dynamic threshold statistical priority multiple access protocol[J]. Journal of Command and Control, 2020, 6(1): 75-80(in Chinese). doi: 10.3969/j.issn.2096-0204.2020.01.0075
    [16]
    臧运娟. 无线通信网络流量预测综述[J]. 电子设计工程, 2017, 25(4): 150-153. doi: 10.14022/j.cnki.dzsjgc.2017.04.038

    ZANG Y J. Traffic prediction in wireless communication network: A survey[J]. Electronic Design Engineering, 2017, 25(4): 150-153(in Chinese). doi: 10.14022/j.cnki.dzsjgc.2017.04.038
    [17]
    FENG H F, SHU Y T. Study on network traffic prediction techniques[C]//International Conference on Wireless Communications. Piscataway: IEEE Press, 2005: 1041-1044.
    [18]
    刘杰, 黄亚楼. 基于BP神经网络的非线性网络流量预测[J]. 计算机应用, 2007, 27(7): 1770-1772.

    LIU J, HUANG Y L. Nonlinear network traffic prediction based on BP neural network[J]. Computer Applications, 2007, 27(7): 1770-1772(in Chinese).
    [19]
    OLIVERIRA T P, BARBAR J S, SOARES A S. Computer network traffic prediction: a comparison between traditional and deep learning neural networks.[J]. International Journal of Big Data Intelligence, 2016, 3(1): 28-37. doi: 10.1504/IJBDI.2016.073903
    [20]
    VINAYAKUMAR R, SOMAN K P, POORNACHANDRAN P. Applying deep learning approaches for network traffic prediction[C]//International Conference on Advances in Computing, Communications and Informatics. Piscataway: IEEE Press, 2017: 2353-2358.
    [21]
    杜爽, 徐展琦, 马涛, 等. 基于神经网络模型的网络流量预测综述[J]. 无线电通信技术, 2020, 46(2): 216-222. doi: 10.3969/j.issn.1003-3114.2020.02.013

    DU S, XU Z Q, MA T, et al. A survey of network traffic prediction based on neural network models[J]. Radio Communications Technology, 2020, 46(2): 216-222(in Chinese). doi: 10.3969/j.issn.1003-3114.2020.02.013
    [22]
    郭佳, 余永斌, 杨晨阳. 基于全注意力机制的多步网络流量预测[J]. 信号处理, 2019, 35(5): 758-767.

    GUO J, YU Y B, YANG C Y. Multi-step prediction of traffic load with all-attention mechanism[J]. Journal of Signal Processing, 2019, 35(5): 758-767(in Chinese).
    [23]
    LI M, WANG Y W, WANG Z W, et al. A deep learning method based on an attention mechanism for wireless network traffic prediction[J]. Ad Hoc networks, 2020, 107: 102258. doi: 10.1016/j.adhoc.2020.102258
    [24]
    CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in natural Language Processing, 2014: 1724-1734.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(290) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return