Volume 49 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHU P R,LIU Y Z,LIU Z C,et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1166-1175 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0376
Citation: ZHU P R,LIU Y Z,LIU Z C,et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1166-1175 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0376

Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM

doi: 10.13700/j.bh.1001-5965.2021.0376
Funds:  Xi’an Youth Talent Lift Project (095920201309)
More Information
  • Corresponding author: E-mail:liuyz_kj@163.com
  • Received Date: 06 Jul 2021
  • Accepted Date: 14 Nov 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 04 Jan 2022
  • Aiming at the problems of slow diagnostic speed and difficulty in pardmeter selection in artifical intelligence algorithms currently used in fault diagnosis of aviation generator rotating rectifiers, an extreme learning machine (SSA-ELM) and complementary ensemble empirical mode decomposition (CEEMD) based fault diagnosis approach is investigated. In the finite element software Maxwell and Simplorer, the three-stage motor model is built, the excitation current signal is collected, the excitation current signal is decomposed into a series of modal components by CEEMD, and the fault characteristic parameters are constructed. Then the training parameters and parameters of the extreme learning machine are optimized by the SSA algorithm, and the fault is diagnosed. Finally, it is verified by the experimental platform. The results show the effectiveness of the three-stage synchronous motor finite element model.Compared with the existing methods, the rotating rectifier diode fault diagnosis method based on CEEMD and SSA-ELM has higher fault diagnosis accuracy and classification speed.

     

  • loading
  • [1]
    孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 021651.

    KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651(in Chinese).
    [2]
    MADONNA V, GIANGRANDE P, GALEA M. Electrical power generation in aircraft: Review, challenges, and opportunities[J]. IEEE Transactions on Transportation Electrification, 2018, 4(3): 646-659. doi: 10.1109/TTE.2018.2834142
    [3]
    唐军祥. 航空三级式发电机旋转整流器故障诊断技术研究[D]. 南京: 南京航空航天大学, 2017: 1-3.

    TANG J X. Research on fault diagnosis technology of aircraft three-stage generator rotating rectifier[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 1-3(in Chinese) .
    [4]
    BATZEL T D, SWANSON D C. Prognostic health management of aircraft power generators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 473-482. doi: 10.1109/TAES.2009.5089535
    [5]
    任磊, 韦徵, 龚春英, 等. 电力电子电路功率器件故障特征参数提取技术综述[J]. 中国电机工程学报, 2015, 35(12): 3089-3101. doi: 10.13334/j.0258-8013.pcsee.2015.12.021

    REN L, WEI Z, GONG C Y, et al. Fault feature extraction techniques for power devices in power electronic converters: A review[J]. Proceedings of the CSEE, 2015, 35(12): 3089-3101(in Chinese). doi: 10.13334/j.0258-8013.pcsee.2015.12.021
    [6]
    TANTAWY A, KOUTSOUKOS X, BISWAS G. Aircraft power generators: Hybrid modeling and simulation for fault detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 552-571. doi: 10.1109/TAES.2012.6129655
    [7]
    BATZEL T D, SWANSON D C, DEFENBAUGH J F. Predictive diagnostics for the main field winding and rotating rectifier assembly in the brushless synchronous generator[C]//4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives. Piscataway: IEEE Press, 2003: 349-354.
    [8]
    叶纪青. 航空发电机旋转整流器故障特征提取技术研究[D]. 南京: 南京航空航天大学, 2017: 29-40.

    YE J Q. Research on feature extraction method for rotating rectifier of aircraft generator[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 29-40(in Chinese).
    [9]
    张敬, 李颖晖, 朱喜华, 等. 三级式发电机旋转整流器故障特征提取[J]. 微电机, 2011, 44(7): 92-96. doi: 10.3969/j.issn.1001-6848.2011.07.022

    ZHANG J, LI Y H, ZHU X H, et al. Fault feature extraction for rotating rectifie of three-stage generator[J]. Micromotors, 2011, 44(7): 92-96(in Chinese). doi: 10.3969/j.issn.1001-6848.2011.07.022
    [10]
    刘勇智, 刘聪. 基于EMD和LS-SVM的旋转整流器故障诊断方法研究[J]. 微电机, 2012, 45(4): 21-24. doi: 10.3969/j.issn.1001-6848.2012.04.006

    LIU Y Z, LIU C. Fault diagnose of rotating rectifier based on EMD and LS-SVM[J]. Micromotors, 2012, 45(4): 21-24(in Chinese). doi: 10.3969/j.issn.1001-6848.2012.04.006
    [11]
    王潇雅, 崔江, 唐军祥, 等. 基于极限学习机的航空旋转整流器故障诊断技术研究[J]. 机械制造与自动化, 2017, 46(5): 219-222. doi: 10.19344/j.cnki.issn1671-5276.2017.05.056

    WANG X Y, CUI J, TANG J X, et al. Fault diagnosis technology research of aircraft generator rotating rectifier based on extreme learning machine[J]. Machine Building & Automation, 2017, 46(5): 219-222(in Chinese). doi: 10.19344/j.cnki.issn1671-5276.2017.05.056
    [12]
    崔江, 郭瑞东, 张卓然, 等. 基于改进DBN的发电机旋转整流器故障特征提取技术[J]. 中国电机工程学报, 2020, 40(7): 2369-2376. doi: 10.13334/j.0258-8013.pcsee.190858

    CUI J, GUO R D, ZHANG Z R, et al. Generator rotating rectifier fault feature extraction technique based on improved DBN[J]. Proceedings of the CSEE, 2020, 40(7): 2369-2376(in Chinese). doi: 10.13334/j.0258-8013.pcsee.190858
    [13]
    崔江, 冯赛, 张卓然, 等. 基于BLS的无刷发电机旋转整流器特征提取技术研究[J]. 中国电机工程学报, 2020, 40(12): 4004-4013. doi: 10.13334/J.0258-8013.PCSEE.190983

    CUI J, FENG S, ZHANG Z R, et al. Research on feature extraction technology of brushless generator rotating rectifier based on BLS[J]. Proceedings of the CSEE, 2020, 40(12): 4004-4013(in Chinese). doi: 10.13334/J.0258-8013.PCSEE.190983
    [14]
    周小麟, 童晓阳. 基于CEEMD-SBO-LSSVR的超短期风电功率组合预测[J]. 电网技术, 2021, 45(3): 855-864. doi: 10.13335/j.1000-3673.pst.2020.0584

    ZHOU X L, TONG X Y. Ultra-short-term wind power combined prediction based on CEEMD-SBO-LSSVR[J]. Power System Technology, 2021, 45(3): 855-864(in Chinese). doi: 10.13335/j.1000-3673.pst.2020.0584
    [15]
    韩宏泉, 吴珊, 侯本伟. 采用核极限学习机的短期需水量预测模型[J]. 哈尔滨工业大学学报, 2022, 54(2): 17-24. doi: 10.11918/202012021

    HAN H Q, WU S, HOU B W. Short-term water demand prediction model using kernel-based extreme learning machine[J]. Journal of Harbin Institute of Technology, 2022, 54(2): 17-24(in Chinese). doi: 10.11918/202012021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(203) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return