Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
QIN Yuantian, SUN Hanqing, YUE Xinet al. Stealthy configuration design and optimization analysis of microsatellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2102-2110. doi: 10.13700/j.bh.1001-5965.2021.0392(in Chinese)
Citation: QIN Yuantian, SUN Hanqing, YUE Xinet al. Stealthy configuration design and optimization analysis of microsatellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2102-2110. doi: 10.13700/j.bh.1001-5965.2021.0392(in Chinese)

Stealthy configuration design and optimization analysis of microsatellite

doi: 10.13700/j.bh.1001-5965.2021.0392
More Information
  • Corresponding author: QIN Yuantian, E-mail: qinyt@nuaa.edu.cn
  • Received Date: 13 Jul 2021
  • Accepted Date: 05 Nov 2021
  • Publish Date: 30 Nov 2021
  • To study the electromagnetic scattering characteristics of the TX-1 microsatellite, an electromagnetic calculation model with a stealthy shape is established. The physical optics (PO) is used to numerically calculate the radar cross section (RCS) under different conditions to verify PO accuracy through comparing with anechoic chamber experimental results. This serves as a foundation for the development of the satellite RCS incidence angle, polarization, frequency, electric size response characteristics and full attitude angle spatial RCS response characteristics. Finally, the configuration is optimized to a symmetric pointed cone configuration referring to the TX-1's stealthy design. By increasing the quantity of sharp cone edges to optimize the configuration, the olive-shaped satellite with a lower RCS configuration is obtained. The TX-1's stealthy trait can effectively dispel the monostatic radar threat. The spatial RCS average value in the best stealth attitude is 4.89 dBsm less than that in the non-stealth attitude. Under S-band (3 GHz), the RCS average value and RCS amplitude of the olive-shaped satellite are 4.77 dBsm and 31.66 dBsm lower than those of TX-1. Under X-band (10 GHz), the RCS average value and RCS amplitude of the olive-shaped satellite are 3.65 dBsm and 43.97 dBsm less than those of TX-1.

     

  • loading
  • [1]
    仇恒抗, 杨琴, 张智芳, 等. 微小卫星可展式刚挠结合板太阳电池阵设计[J]. 航天器工程, 2019, 28(3): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201903008.htm

    QIU H K, YANG Q, ZHANG Z F, et al. Design of expandable rigid flexible combined plate solar array for microsatellite[J]. Spacecraft Engineering, 2019, 28(3): 46-51(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201903008.htm
    [2]
    尤政, 李冠华. 多学科设计优化方法在微纳卫星总体设计中的应用[J]. 中国航天, 2010(4): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT201004012.htm

    YOU Z, LI G H. Application of multidisciplinary design optimization methods in the overall design of micro and nanosatellites[J]. China Aerospace, 2010(4): 36-38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT201004012.htm
    [3]
    HUANG H. Concept study on satellite stealth[J]. Aerospace Electronic Warfare, 2010(6): 009.
    [4]
    胡豪斌, 张翔, 廖文和, 等. 卫星隐身技术研究进展及发展趋势[J]. 国防科技大学学报, 2021, 43(3): 107-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ202103014.htm

    HU H B, ZHANG X, LIAO W H, et al. Research progress and development trend of satellite stealth technology[J]. Journal of National University of Defense Technology, 2021, 43(3): 107-127(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ202103014.htm
    [5]
    郑侃. 隐身微小卫星结构设计关键技术研究[D]. 南京: 南京航空航天大学, 2011.

    ZHENG K. Research on the key technology of stealthy microsa-tellite structure design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
    [6]
    朱冬骏, 张占月, 赵程亮, 等. 一种实现光学隐身的卫星构型设计[J]. 空间控制技术与应用, 2017, 43(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201701010.htm

    ZHU D J, ZHANG Z Y, ZHAO C L, et al. A satellite configuration design to achieve optical stealth[J]. Space Control Technology and Applications, 2017, 43(1): 61-66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201701010.htm
    [7]
    ZENG H T, ZHAO X W, SU Q, et al. Fast coating analysis and modeling for RCS reduction of aircraft[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1481-1487. doi: 10.1016/j.cja.2018.11.001
    [8]
    刘战合, 苗楠, 王菁, 等. 不同气动布局轰炸机电磁隐身性能对比研究[J]. 科学技术与工程, 2020, 20(23): 9640-9646. doi: 10.3969/j.issn.1671-1815.2020.23.057

    LIU Z H, MIAO N, WANG J, et al. Comparative study on electromagnetic stealth performance of bombers with different aerodynamic layouts[J]. Science, Technology and Engineering, 2020, 20(23): 9640-9646(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.23.057
    [9]
    YI M X, WANG L F, HUANG J. Active cancellation analysis based on the radar detection probability[J]. Aerospace Science and Technology, 2015, 46: 273-281.
    [10]
    ZHOU Z Y, HUANG J, YI M X. Comprehensive optimization of aerodynamic noise and radar stealth for helicopter rotor based on Pareto solution[J]. Aerospace Science and Technology, 2018, 82-83: 607-619.
    [11]
    桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.

    SANG J H. Stealth technology of flying vehicles[M]. Beijing: Aviation Industry Press, 2013(in Chinese).
    [12]
    雷浩. 物理光学算法在电大尺寸目标电磁散射中的应用[D]. 西安: 西安电子科技大学, 2018.

    LEI H. Application of physical optics algorithms in electromagnetic scattering of electrically large targets[D]. Xi'an: Xidian University, 2018(in Chinese).
    [13]
    吴安雯, 吴语茂, 杨杨, 等. 矩量法-物理光学混合算法计算多尺度复合目标电磁散射场[J]. 电波科学学报, 2019, 34(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201901014.htm

    WU A W, WU Y M, YANG Y, et al. The method of moments physical optics hybrid algorithm to calculate the electromagnetic scattering field of multiscale compound targets[J]. Chinese Journal of Radio Science, 2019, 34(1): 83-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201901014.htm
    [14]
    张策. 物理光学法及其迭代加速算法在电磁散射中的应用[D]. 西安: 西安电子科技大学, 2019.

    ZHANG C. Application of physical optics method and its iterative acceleration algorithm in electromagnetic scattering[D]. Xi'an: Xidian University, 2019(in Chinese).
    [15]
    岳奎志, 孙聪, 姬金祖. 双立尾对战斗机隐身特性的数值模拟[J]. 北京航空航天大学学报, 2014, 40(2): 160-165. https://bhxb.buaa.edu.cn/bhzk/article/id/12841

    YUE K Z, SUN C, JI J Z. Numerical simulation of the stealth characteristics of fighter jets with twin vertical tails[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 160-165(in Chinese). https://bhxb.buaa.edu.cn/bhzk/article/id/12841
    [16]
    肖厚地, 刘龙斌, 吕明云. X型尾翼临近空间飞艇隐身特性仿真[J]. 北京航空航天大学学报, 2015, 41(1): 181-186. doi: 10.13700/j.bh.1001-5965.2014.0047

    XIAO H D, LIU L B, LV M Y. Simulation of stealth characteristics of X-tail airship near space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 181-186(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(442) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return