Volume 49 Issue 5
May  2023
Turn off MathJax
Article Contents
LU X,WANG T B,PANG L P,et al. Quantitative evaluation model of surplus mental workload in flight task[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1184-1192 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0407
Citation: LU X,WANG T B,PANG L P,et al. Quantitative evaluation model of surplus mental workload in flight task[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1184-1192 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0407

Quantitative evaluation model of surplus mental workload in flight task

doi: 10.13700/j.bh.1001-5965.2021.0407
Funds:  Liao Ning Revitalization Talents Program (XLYC1802092)
More Information
  • Corresponding author: E-mail:boboxph@163.com
  • Received Date: 19 Jul 2021
  • Accepted Date: 11 Oct 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 16 Dec 2021
  • In order to evaluate the mental workload of pilots in flight task, a quantitative evaluation model of mental workload based on task demand load (TDL) and staff workload capacity (SWC) was established. Based on this, the evaluation methods of surplus mental workload (SMWL) and occupancy rate of mwl (ORMWL) were proposed. The information entropy method was used to quantify the amount of information on the information display and control interface, based on the flight situation experiment designed by the MATB task platform, in order to verify the validity of the model, the mental workload of 15 subjects at different task levels was evaluated. Based on the flight situation experiment designed by the MATB task platform, the information entropy method was used to quantify the amount of information on the information display and control interface. In order to verify the validity of the model, the mental workload of 15 subjects at different task levels was evaluated. The results show that the SMWL value of the SMWL model method was correlated with the NASA subjective scale value. And, the increase of task level had a significant U-shaped impact on the mental workload of the staff. Meanwhile, the increase of task level had a significant U-shaped impact on the mental workload of the staff. Therefore, the model established in this paper and based on the concepts of SMWL and ORMWL can be used to conduct a real-time and quantitative evaluation of the mental workload of pilots during flight tasks, providing a new idea for the quantification of mental workload.

     

  • loading
  • [1]
    SHERIDAN T B. Mental workload in decision and control[C]// 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. Piscataway: IEEE Press, 2007: 977-982.
    [2]
    柳忠起, 袁修干, 刘涛, 等. 航空工效中的脑力负荷测量技术[J]. 人类工效学, 2003, 9(2): 19-22. doi: 10.3969/j.issn.1006-8309.2003.02.006

    LIU Z Q, YUAN X G, LIU T, et al. Measurement technology of mental workload in aviation ergonomics[J]. Chinese Ergonomics, 2003, 9(2): 19-22(in Chinese). doi: 10.3969/j.issn.1006-8309.2003.02.006
    [3]
    康卫勇, 袁修干, 柳忠起, 等. 飞机座舱视觉显示界面脑力负荷综合评价方法[J]. 航天医学与医学工程, 2008, 21(2): 103-107. doi: 10.3969/j.issn.1002-0837.2008.02.006

    KANG W Y, YUAN X G, LIU Z Q, et al. Synthetic evaluation method of mental workload on visual display interface in airplane cockpit[J]. Space Medicine & Medical Engineering, 2008, 21(2): 103-107(in Chinese). doi: 10.3969/j.issn.1002-0837.2008.02.006
    [4]
    QU H Q, SHAN Y P, LIU Y Z, et al. Mental workload classification method based on EEG independent component features[J]. Applied Sciences, 2020, 10(9): 3036. doi: 10.3390/app10093036
    [5]
    张洁, 庞丽萍, 完颜笑如, 等. 基于脑电功率谱密度的作业人员脑力负荷评估方法[J]. 航空学报, 2020, 41(10): 123618.

    ZHANG J, PANG L P, WANYAN X R, et al. Method for operator mental workload assessment based on power spectral density of EEG[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123618(in Chinese).
    [6]
    SIEGEL A I, WOLF J J. Man-machine simulation models[M]. Hoboken: Wiley-Inter-Science, 1969.
    [7]
    WICKENS C D. Mental Workload: Assessment, prediction and consequences[C]//LONGO L, LEVA M. International Symposium on Human Mental Workload: Models and Applications. Berlin: Springer, 2017: 18-29.
    [8]
    王洁, 方卫宁, 李广燕. 基于多资源理论的脑力负荷评价方法[J]. 北京交通大学学报, 2010, 34(6): 107-110. doi: 10.3969/j.issn.1673-0291.2010.06.024

    WANG J, FANG W N, LI G Y. Mental workload evaluation method based on multi-resource theory model[J]. Journal of Beijing Jiaotong University, 2010, 34(6): 107-110(in Chinese). doi: 10.3969/j.issn.1673-0291.2010.06.024
    [9]
    NEERINCX M A, KENNEDIE S, GROOTJEN M, et al. Modeling the cognitive task load and performance of naval operators[C]//International Conference on Foundations of Augmented Cognition. Berlin: Springer, 2009: 260-269.
    [10]
    NEERINCX M A, VELTMAN J A. How to manage cognitive task load during supervision and damage control in an all-electric ship[J]. IASME Transactions, 2012, 2(1): 253-258.
    [11]
    COLIN T R, MIOCH T, SMETS N J J M, et al. Estimating an operator’s cognitive state in real time: A user modeling approach[C]// 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication. Piscataway: IEEE Press, 2012: 627-633.
    [12]
    张安, 任卫, 汤志荔, 等. 基于CTL模型和任务绩效的驾驶舱动态功能分配方法[J]. 火力与指挥控制, 2018, 43(7): 151-156. doi: 10.3969/j.issn.1002-0640.2018.07.028

    ZHANG A, REN W, TANG Z L, et al. Dynamic function allocation for cockpit based on CTL model and task performance[J]. Fire Control & Command Control, 2018, 43(7): 151-156(in Chinese). doi: 10.3969/j.issn.1002-0640.2018.07.028
    [13]
    XIAO X, WANYAN X R, ZHUANG D M. Mental workload prediction based on attentional resource allocation and information processing[J]. Bio-Medical Materials and Engineering, 2015, 26(S1): S871-S879.
    [14]
    HEILIGERS M, VAN HOLTEN T, MULDER M. Factors that influence pilot task demand load during area navigation approaches[J]. Journal of Aircraft, 2011, 48(3): 975-994. doi: 10.2514/1.C031188
    [15]
    HEILIGERS M M, VAN HOLTEN T, MULDER M. Predicting pilot task demand load during final approach[J]. The International Journal of Aviation Psychology, 2009, 19(4): 391-416. doi: 10.1080/10508410902983987
    [16]
    COMANS J, VAN PAASSEN M M, MULDER M. Pilot workload monitoring and adaptive aviation automation: A solution space-based approach[C]// Proceedings of the 28th Annual European Conference on Cognitive Ergonomics. New York: ACM, 2010: 245-250.
    [17]
    DA SILVA F P. Mental workload, task demand and driving performance: What relation?[J]. Procedia Social & Behavioral Sciences, 2014, 162: 310-319.
    [18]
    SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(4): 623-656. doi: 10.1002/j.1538-7305.1948.tb00917.x
    [19]
    MOWSHOWITZ A. Entropy and the complexity of graphs: II. The information content of digraphs and infinite graphs[J]. The Bulletin of Mathematical Biophysics, 1968, 30(2): 225-240. doi: 10.1007/BF02476692
    [20]
    ZHANG J, PANG L P, CAO X D, et al. The effects of elevated carbon dioxide concentration and mental workload on task performance in an enclosed environmental chamber[J]. Building and Environment, 2020, 178: 106938. doi: 10.1016/j.buildenv.2020.106938
    [21]
    BUEHLER M G, ALLEN R A, BLAES B R, et al. National Aeronautics and Space Administration[M]. Berlin: Springer, 2011.
    [22]
    GUTZWILLER R S, WICKENS C D, CLEGG B A. Workload overload modeling[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2014, 58(1): 849-853. doi: 10.1177/1541931214581179
    [23]
    WICKENS C D, GUTZWILLER R S, VIEANE A, et al. Time sharing between robotics and process control: Validating a model of attention switching[J]. Human Factors, 2016, 58(2): 322-343. doi: 10.1177/0018720815622761
    [24]
    CHANDRA S, SHARMA G, SHARMA M, et al. Workload regulation by Sudarshan Kriya: An EEG and ECG perspective[J]. Brain Informatics, 2017, 4(1): 13-25. doi: 10.1007/s40708-016-0055-1
    [25]
    FAIRCLOUGH S H, VENABLES L. Prediction of subjective states from psychophysiology: A multivariate approach[J]. Biological Psychology, 2006, 71(1): 100-110. doi: 10.1016/j.biopsycho.2005.03.007
    [26]
    冯传宴, 完颜笑如, 刘双, 等. 负荷条件下注意力分配策略对情境意识的影响[J]. 航空学报, 2020, 41(3): 123307.

    FENG C Y, WANYAN X R, LIU S, et al. Influence of different attention allocation strategies under workloads on situation awareness[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123307(in Chinese).
    [27]
    范晓丽, 牛海燕, 周前祥, 等. 基于EEG的脑力疲劳特征研究[J]. 北京航空航天大学学报, 2016, 42(7): 1406-1413. doi: 10.13700/j.bh.1001-5965.2015.0428

    FAN X L, NIU H Y, ZHOU Q X, et al. Mental fatigue characteristics based on EEG analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1406-1413(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0428
    [28]
    DE WAARD D, BROOKHUIS K A. The measurement of drivers’ mental workload[D]. Groningen: University of Groningen, 1996.
    [29]
    KIM N Y, HOUSE R, YUN M H, et al. Neural correlates of workload transition in multitasking: An ACT-R model of hysteresis effect[J]. Frontiers in Human Neuroscience, 2019, 12: 535. doi: 10.3389/fnhum.2018.00535
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(319) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return