Volume 49 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0416
Citation: ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0416

EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer

doi: 10.13700/j.bh.1001-5965.2021.0416
Funds:  National Natural Science Foundation of China (51975294); Open Project Fund of State Key Laboratory of High Performance Complex Manufacturing (Kfkt2019-11); Open Fund of Laboratory of Aerospace Servo Actuation and Transmission (LASAT-2021-0503)
More Information
  • Corresponding author: E-mail:hujiannjust@163.com
  • Received Date: 26 Jul 2021
  • Accepted Date: 14 Nov 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 22 Nov 2021
  • Aiming at the characteristics of high power density, complex working conditions, high integration of components and the wide variety of faults of electro hydrostatic actuator (EHA), a fault diagnosis and fault-tolerant controller of electro-hydro actuator based on an adaptive neural network robust observer is designed. A robust observer is proposed to observe the internal state of the model. The uncertain parameters, such as elastic modulus of hydraulic system is estimated by adaptive law; and the nonlinear, such as friction disturbance is approximated by radial basis function (RBF) neural network. The feedforward compensation method is used to compensate the fault and parameter uncertainty, and the robust term is designed to overcome other disturbances. By using Lyapunov stability theorem, it is proved that the proposed controller can realize the bounded stability of the system in the presence of faults. The co-simulation results show that the proposed controller has higher control accuracy and robustness than the traditional proportional, integral and differential controller (PID) and adaptive robust controller (ARC).

     

  • loading
  • [1]
    权龙. 泵控缸电液技术研究现状、存在问题及创新解决方案[J]. 机械工程学报, 2008, 44(11): 87-92. doi: 10.3901/JME.2008.11.087

    QUAN L. Current state, problems and the innovative solution of electro-hydraulic technology of pump controlled cylinder[J]. Chinese Journal of Mechanical Engineering, 2008, 44(11): 87-92(in Chinese). doi: 10.3901/JME.2008.11.087
    [2]
    付永领, 韩旭, 杨荣荣, 等. 电动静液作动器设计方法综述[J]. 北京航空航天大学学报, 2017, 43(10): 1939-1952. doi: 10.13700/j.bh.1001-5965.2017.0195

    FU Y L, HAN X, YANG R R, et al. Review on design method of electro hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 1939-1952(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0195
    [3]
    徐宝申, 刘涛. 新型电液伺服系统及其在飞机上的应用[J]. 飞航导弹, 2018(3): 90-95. doi: 10.16338/j.issn.1009-1319.2018.03.21

    XU B S, LIU T. New electro-hydraulic servo system and its application in aircraft[J]. Aerodynamic Missile Journal, 2018(3): 90-95(in Chinese). doi: 10.16338/j.issn.1009-1319.2018.03.21
    [4]
    陈经跃, 李奕宁, 苗蕾, 等. 民机用高压高速液压泵的研究[J]. 液压气动与密封, 2019, 39(6): 32-35. doi: 10.3969/j.issn.1008-0813.2019.06.011

    CHEN J Y, LI Y N, MIAO L, et al. Research on high pressure and high speed hydraulic pump for civil aircraft[J]. Hydraulics Pneumatics & Seals, 2019, 39(6): 32-35(in Chinese). doi: 10.3969/j.issn.1008-0813.2019.06.011
    [5]
    周汝胜, 焦宗夏, 王少萍. 液压系统故障诊断技术的研究现状与发展趋势[J]. 机械工程学报, 2006, 42(9): 6-14. doi: 10.3321/j.issn:0577-6686.2006.09.002

    ZHOU R S, JIAO Z X, WANG S P. Current research and developing trends on fault diagnosis of hydraulic systems[J]. Chinese Journal of Mechanical Engineering, 2006, 42(9): 6-14(in Chinese). doi: 10.3321/j.issn:0577-6686.2006.09.002
    [6]
    俞杭, 陈换过, 肖雪, 等. 基于SOM的电静压伺服机构油滤堵塞故障诊断[J]. 成组技术与生产现代化, 2019, 36(2): 11-16. doi: 10.3969/j.issn.1006-3269.2019.02.003

    YU H, CHEN H G, XIAO X, et al. SOM based fault diagnosis of the filter blockage in electro-hydrostatic actuator[J]. Group Technology & Production Modernization, 2019, 36(2): 11-16(in Chinese). doi: 10.3969/j.issn.1006-3269.2019.02.003
    [7]
    俞杭. 基于PCA-SOM的电静压伺服机构故障诊断研究[D]. 杭州: 浙江理工大学, 2020: 26-42.

    YU H. Research on fault diagnosis of the electro-hydrostatic actouators based on PCA-SOM[D]. Hangzhou: Zhejiang University of Technology, 2020: 26-42(in Chinese).
    [8]
    LOESCH VIANNA W O, DE SOUZA RIBEIRO L G, YONEYAMA T. Electro hydraulic servovalve health monitoring using fading extended Kalman filter[C]//IEEE Conference on Prognostics and Health Management (PHM). Piscataway: IEEE Press, 2015: 1-6.
    [9]
    刘华, 汪成文, 郭新平, 等. 电液负载敏感位置伺服系统自抗扰控制方法[J]. 北京航空航天大学学报, 2020, 46(11): 2131-2139. doi: 10.13700/j.bh.1001-5965.2019.0569

    LIU H, WANG C W, GUO X P, et al. Active disturbance rejection control for position servo system based on electro-hydraulic load sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2131-2139(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0569
    [10]
    周萌, 王振华, 王昶, 等. Lipschitz非线性系统的H_/L故障检测观测器设计[J]. 控制理论与应用, 2018, 35(6): 778-785.

    ZHOU M, WANG Z H, WANG C, et al. H_/L fault detection observer design for Lipschitz nonlinear systems[J]. Control Theory & Applications, 2018, 35(6): 778-785(in Chinese).
    [11]
    张若青, 裘丽华. 基于动态神经网络的液压伺服系统故障检测[J]. 机械工程学报, 2002, 38(3): 46-49. doi: 10.3321/j.issn:0577-6686.2002.03.011

    ZHANG R Q, QIU L H. Fault detection of hydraulic servo system based on dynamic neural network[J]. Chinese Journal of Mechanical Engineering, 2002, 38(3): 46-49(in Chinese). doi: 10.3321/j.issn:0577-6686.2002.03.011
    [12]
    肖雪, 赵守军, 陈克勤, 等. 电静压伺服机构故障诊断中的主成分分析方法应用[J]. 导弹与航天运载技术, 2019(1): 94-100.

    XIAO X, ZHAO S J, CHEN K Q, et al. Application of principal component analysis in fault diagnosis of electro-hydrostatic actuators[J]. Missiles and Space Vehicles, 2019(1): 94-100(in Chinese).
    [13]
    KIM H M, PARK S H, SONG J H, et al. Robust position control of electro-hydraulic actuator systems using the adaptive back-stepping control scheme[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2010, 224(6): 737-746. doi: 10.1243/09596518JSCE980
    [14]
    YOON J T, YOUN B D, YOO M, et al. Life-cycle maintenance cost analysis framework considering time-dependent false and missed alarms for fault diagnosis[J]. Reliability Engineering & System Safety, 2019, 184: 181-192.
    [15]
    LIU J, ZHANG L X, LI H. Application of grey relation analysis in fault diagnosis of EHA-VSVP[C]//Proceedings of 2013 IEEE International Conference on Grey systems and Intelligent Services (GSIS). Piscataway: IEEE Press, 2014: 29-32.
    [16]
    戴邵武, 罗鑫辉, 戴洪德. 基于状态反馈的执行器故障容错控制[J]. 海军航空工程学院学报, 2019, 34(2): 205-210. doi: 10.7682/j.issn.1673-1522.2019.02.005

    DAI S W, LUO X H, DAI H D. Actuator fault-tolerant control of actuator based on state feedback[J]. Journal of Naval Aeronautical and Astronautical University, 2019, 34(2): 205-210(in Chinese). doi: 10.7682/j.issn.1673-1522.2019.02.005
    [17]
    ZHU Y Q, BO L, LI Y R, et al. Design of a electro-hydrostatic actuator controller based on disturbance observer[C]//43rd Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2017: 4137-4142.
    [18]
    李仿华. 基于神经网络的实时故障检测研究[D]. 合肥: 安徽大学, 2012: 32-37.

    LI F H. Research of real-time fault detection based on neural networks[D]. Hefei: Anhui University, 2012: 32-37(in Chinese).
    [19]
    何静. 基于观测器的非线性系统鲁棒故障检测与重构方法研究[D]. 长沙: 国防科学技术大学, 2009: 74-91.

    HE J. On observer-based robust fault detection and reconstruction for nonlinear systems[D]. Changsha: National University of Defense Science Technology, 2009: 74-91(in Chinese).
    [20]
    RAHIMILARKI R, GAO Z, ZHANG A, et al. Robust neural network fault estimation approach for nonlinear dynamic systems with applications to wind turbine systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15(12): 6302-6312. doi: 10.1109/TII.2019.2893845
    [21]
    YAO J Y, JIAO Z X, MA D W. Adaptive robust control of DC motors with extended state observer[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3630-3637. doi: 10.1109/TIE.2013.2281165
    [22]
    宋豫. 锻造油压机开式泵控液压系统研究[D]. 秦皇岛: 燕山大学, 2016: 85-99.

    SONG Y. Research on open circuit pump-controlled hydraulic system of forging press[D]. Qinhuangdao: Yanshan University, 2016: 85-99(in Chinese).
    [23]
    陈革新, 赵鹏辉, 刘小胜, 等. 电液伺服闭式泵控系统位置前馈补偿控制研究[J]. 液压与气动, 2019(12): 28-32. doi: 10.11832/j.issn.1000-4858.2019.12.004

    CHEN G X, ZHAO P H, LIU X S, et al. Position feedforward compensation control of electro hydraulic servo closed pump control system[J]. Chinese Hydraulics & Pneumatics, 2019(12): 28-32(in Chinese). doi: 10.11832/j.issn.1000-4858.2019.12.004
    [24]
    刘金琨. 智能控制: 理论基础、算法设计与应用[M]. 北京: 清华大学出版社, 2019: 137-150.

    LIU J K. Intelligent control[M]. Beijing: Tsinghua University Press, 2019: 137-150(in Chinese).
    [25]
    韩松杉, 焦宗夏, 尚耀星, 等. 基于舵机指令前馈的电液负载模拟器同步控制[J]. 北京航空航天大学学报, 2015, 41(1): 124-132.

    HAN S S, JIAO Z X, SHANG Y X, et al. Synchronizing compensation control of electro-hydraulic load simulator using command signal of actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 124-132(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(6)

    Article Metrics

    Article views(449) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return