Volume 49 Issue 5
May  2023
Turn off MathJax
Article Contents
LIN J Q,LI B,QIU Y H. Removal cabin bleeding air system gaseous pollutants method based on air conditioning sinusoidal wind[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1009-1016 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0422
Citation: LIN J Q,LI B,QIU Y H. Removal cabin bleeding air system gaseous pollutants method based on air conditioning sinusoidal wind[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1009-1016 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0422

Removal cabin bleeding air system gaseous pollutants method based on air conditioning sinusoidal wind

doi: 10.13700/j.bh.1001-5965.2021.0422
Funds:  Special Program for Civil Airplane of the Ministry of Industry and Information Technology,China (2020020306)
More Information
  • Corresponding author: E-mail:yhqiu@cauc.edu.cn
  • Received Date: 26 Jul 2021
  • Accepted Date: 17 Sep 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 29 Sep 2021
  • The gaseous pollutants get into the cabin by the engine bleeding air system when the plane is waiting for taking off on the apron. However, the cabin air conditioning wind speed is constant, and the removal efficiency of the bleeding gaseous pollutants is low. To solve this problem, the Boeing737 cabin simulation model was established and the accuracy of the cabin simulation model was verified by particle image velocimetry (PIV) experiment. The air conditioning used sinusoidal wind instead of the constant wind, and used NO2 as bleeding air pollutant. Three work modes of air supply, the ceiling air supply, sidewall air supply and mixed air supply were simulated. The distribution results of NO2 in passenger breathing areas and cabin were obtained by constant wind and sinusoidal wind. A method based on air age and draft rating index (DR) was proposed to evaluate the best air conditioning work mode, which is efficient in removing cabin gaseous pollutants. In 180 seconds, the average concentration of NO2 decreased by 7.95% by sinusoidal wind ceiling air supply mode. The sinusoidal wind sidewall air supply mode decreased by 6.51%, and the sinusoidal wind mixed air supply mode decreased by 23.3%. The sinusoidal wind mixed air supply mode has the best effect on the removal of NO2 and the minimum air age. The draft rating index meets the requirements of thermal comfort.

     

  • loading
  • [1]
    ZAPOROZHETS O, SYNYLO K. Improvements on aircraft engine emission and emission inventory asesessment inside the airport area[J]. Energy, 2017, 140: 1350-1357. doi: 10.1016/j.energy.2017.07.178
    [2]
    韩博, 黄佳敏, 魏志强. 民航飞机起飞过程气态污染物排放特征分析[J]. 环境科学, 2016, 37(12): 4524-4530.

    HAN B, HUANG J M, WEI Z Q. Gaseous emission characterization of civil aviation aircraft during takeoff[J]. Environmental Science, 2016, 37(12): 4524-4530(in Chinese).
    [3]
    陈希远, 王振斌, 马博文, 等. 考虑污染物传播规律的飞机座舱送风方式研究[J]. 航空学报, 2018, 39(7): 121994.

    CHEN X Y, WANG Z B, MA B W, et al. Study on air supply mode of aircraft cabin considering contaminant transmission laws[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121994(in Chinese).
    [4]
    杨建忠, 马博文, 陈希远, 等. 送风形式对飞机座舱引气污染物扩散影响[J]. 交通运输工程学报, 2019, 19(1): 108-118. doi: 10.3969/j.issn.1671-1637.2019.01.011

    YANG J Z, MA B W, CHEN X Y, et al. Influence of air supply form on contaminat diffusion of bleed air in aircraft cabin[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 108-118(in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.011
    [5]
    林家泉, 李弯弯, 王瑞婷, 等. 基于飞机客舱空气品质的桥载空调送风优化[J]. 北京航空航天大学学报, 2017, 43(11): 2259-2265. doi: 10.13700/j.bh.1001-5965.2017.0059

    LIN J Q, LI W W, WANG R T, et al. Optimization of air supply for bridge load air conditioning based on aircraft cabin air quality[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2259-2265(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0059
    [6]
    WANG A J, ZHANG Y H, SUN Y G, et al. Experimental study of ventilation effectiveness and air velocity distribution in an aircraft cabin mockup[J]. Building and Environment, 2008, 43(3): 337-343.
    [7]
    YAN W, ZHANG Y H, SUN Y G, et al. Experimental and CFD study of unsteady airborne pollutant transport within an aircraft cabin mock-up[J]. Building and Environment, 2009, 44(1): 34-43.
    [8]
    LI F, LIU J J, PEI J J, et al. Experimental study of gaseous and particulate contaminants distribution in an aircraft cabin[J]. Atmospheric Environment, 2014, 85: 223-233. doi: 10.1016/j.atmosenv.2013.11.049
    [9]
    POUSSOU S B, MAZUMDAR S, PLESNIAK M W, et al. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions[J]. Atmospheric Environment, 2010, 44(24): 2830-2839. doi: 10.1016/j.atmosenv.2010.04.053
    [10]
    黄衍, 段然, 李炳烨, 等. 飞机座舱个性送风下的气态污染物传播规律实例研究[J]. 应用力学学报, 2015, 32(4): 586-592.

    HUANG Y, DUAN R, LI B Y, et al. Simulation of contaminant transportation in aircraft cabin with partly gaspers on[J]. Chinese Journal of Applied Mechanics, 2015, 32(4): 586-592(in Chinese).
    [11]
    YOU R Y, ZHANG Y Z, ZHAO X W, et al. An innovative personalized displacement ventilation system for airliner cabins[J]. Building and Environment, 2018, 137: 41-50. doi: 10.1016/j.buildenv.2018.03.057
    [12]
    ZHANG T F, LI P H, WANG S G. A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes[J]. Building and Environment, 2012, 47: 89-99. doi: 10.1016/j.buildenv.2011.04.035
    [13]
    ZHANG T F, CHEN Q Y. Novel air distribution systems for commercial aircraft cabins[J]. Building and Environment, 2007, 42(4): 1675-1684.
    [14]
    MESENHOLLER E, VENNEMANN P, HUSSONG J. Unsteady room ventilation-A review[J]. Building and Environment, 2020, 169: 106595. doi: 10.1016/j.buildenv.2019.106595
    [15]
    FALLENIUS B E, SATTARI A, FRANSSON J H, et al. Experimental study on the effect of pulsating inflow to an enclosure for improved mixing[J]. International Journal of Heat and Fluid Flow, 2013, 44: 108-119. doi: 10.1016/j.ijheatfluidflow.2013.05.004
    [16]
    VAN HOOFF T, BLOCKEN B, CAO S J, et al. Mixing ventilation driven by two oppositely located supply jets with a time-periodic supply velocity: A numerical analysis using computational fluid dynamics[J]. Indoor and Built Environment, 2020, 29(4): 603-620. doi: 10.1177/1420326X19884667
    [17]
    WU C F, AHMED N A. A novel mode of air supply for aircraft cabin ventilation[J]. Building and Environment, 2012, 56: 47-56. doi: 10.1016/j.buildenv.2012.02.025
    [18]
    林家泉, 戴仕卿. 基于排污效率和吹风感指数的客舱空调最佳送风方式[J]. 航空学报, 2022, 43(7): 125266.

    LIN J Q, DAI S Q. Optimal air supply mode of aircraft cabin based on removal effectiveness and draft rating[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125266(in Chinese).
    [19]
    ZHANG Z, ZHANG W, ZHAI Z Q, et al. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2-Comparison with experimental data from literature[J]. HVAC & R Research, 2007, 13(6): 871-886.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views(295) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return