Volume 49 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
SONG Z R,ZHAO J C,YANG W F. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):100-105 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0431
Citation: SONG Z R,ZHAO J C,YANG W F. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):100-105 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0431

Boundary protection control method of helicopter power system based on flight test analysis

doi: 10.13700/j.bh.1001-5965.2021.0431
More Information
  • Corresponding author: E-mail:echo_leslie@163.com
  • Received Date: 30 Jul 2021
  • Accepted Date: 23 Sep 2021
  • Available Online: 16 Jan 2023
  • Publish Date: 09 Nov 2021
  • Turboshaft engine is the main part of the power system of rotor aircraft such as helicopter. Once the key engine parameters exceed the limit, the method of reducing fuel quantity and power is generally adopted to limit, which will temporarily reduce the speed of power turbine, making it about 4%−6% lower than the normal rated state. However, if the overlimit state is not removed in time, the speed of the power turbine will continue to decrease, threatening the flight safety. Based on the flight test analysis of a certain helicopter from phenomena to data to solve the above problems. This paper proposes a control method, through the design from the total distance control law, achieve dynamic system boundary protection control in the condition of engine parameters overrun. if overrun status can’t get out timely, then engine change automatically to recover the normal control of power system. This method significantly enhances the robustness of helicopter power system control and the safety of the flight. The correctness of the design is verified by modeling the power system and simulating the control law.

     

  • loading
  • [1]
    PAKMEHR M , FITZGERALD N , PADUANO J , et al. Dynamic modeling of a turboshaft engine driving a variable pitch propeller: A decentralized approach[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011.
    [2]
    方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2010: 14-15.

    FANG Z P, CHEN W C, ZHANG S G. Aeronautical vehicle flight dynamics [M]. Beijing: Beihang University Press, 2010: 14-15 (in Chinese).
    [3]
    方振平. 带自动器飞机飞行动力学[M]. 北京: 国防工业出版社, 2010: 36-37.

    FANG Z P. Flight dynamics of aircraft with automatic [M]. Beijing: National Defense Industry Press, 2010: 36-37(in Chinese).
    [4]
    吴森堂, 费玉华. 飞行控制系统[M]. 北京: 北京航空航天大学出版社, 2009: 50-52.

    WU S T, FEI Y H. Flight control system[M]. Beijing: Beihang University Press, 2009: 50-52(in Chinese).
    [5]
    麻士东, 韩亮, 龚光红, 等. 涡轴发动机旋翼系统仿真建模研究[J]. 计算机仿真, 2009, 26(9): 47-50. doi: 10.3969/j.issn.1006-9348.2009.09.015

    MA S D, HAN L, GONG G H, et al. Research on simulation modeling of turboshaft engine rotor system[J]. Computer Simulation, 2009, 26(9): 47-50(in Chinese). doi: 10.3969/j.issn.1006-9348.2009.09.015
    [6]
    CORPORAN E , CASSELBERRY R Q , KLINGSHIRN C D , et al. Fuel effects on the lean operational limits of a T63 turboshaft engine[C]// AIAA Scitech 2019 Forum, 2019.
    [7]
    KERLER M R , C SCHAFFER, ERHARD W, et al. Design parameter identification of the air supply for a turboshaft engine quick-start system[C]//52nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2016.
    [8]
    陈义峰, 郭迎清, 李睿超, 等. 涡轴发动机分布式控制系统架构设计[J]. 航空计算技术, 2019, 49(5): 21-26.

    CHEN Y F, GUO Y Q, LI R C, et al. Design of distributed control system for turboshaft engine[J]. Aeronautical Computing Technology, 2019, 49(5): 21-26(in Chinese).
    [9]
    李家云, 陈华. 直升机发动机数学控制系统简述[J]. 直升机技术, 2002(3): 46-49.

    LI J Y, CHEN H. Brief introduction of helicopter engine mathematical control system[J]. Helicopter Technology, 2002(3): 46-49(in Chinese).
    [10]
    姚华. 涡轴发动机数控系统控制规律及容错控制[J]. 航空动力学报, 2011, 26(2): 475-480. doi: 10.13224/j.cnki.jasp.2011.02.016

    YAO H. Control law and fault tolerant control of turboshaft engine numerical control system[J]. Journal of Aerospace Power, 2011, 26(2): 475-480(in Chinese). doi: 10.13224/j.cnki.jasp.2011.02.016
    [11]
    杨征山, 李胜泉, 章霖官. 涡轴发动机动力涡轮转速控制回路方案研究[J]. 航空发动机, 2005, 31(2): 46-50.

    YANG Z S, LI S Q, ZHANG L G. Study on turbine speed control loop scheme of turboshaft engine[J]. Aero Engine, 2005, 31(2): 46-50(in Chinese).
    [12]
    姚文荣. 涡轴发动机/旋翼综合建模、控制及优化研究[D]. 南京: 南京航空航天大学, 2008: 50-51.

    YAO W R. Research on integrated modeling, control and optimization of turboshaft engine/rotor [D]. Nanjing : Nanjing University of Aeronautics and Astronautics, 2008: 50-51(in Chinese).
    [13]
    冯海峰. 航空涡轴发动机数学建模方法与控制规律研究[D]. 西安: 西北工业大学, 2007: 43-44.

    FENG H F. Research on mathematical modeling method and control law of aero turboshaft engine [D]. Xi’an: Northwestern Polytechnical University, 2007: 43-44(in Chinese).
    [14]
    丁琳. 涡轴发动机数字控制与仿真技术研究 [D]. 南京: 南京航空航天大学, 2011: 34-35.

    DING L. Research on digital control and simulation technology of turboshaft engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 34-35(in Chinese).
    [15]
    赵海刚, 郭佳男, 王俊琦. 某型涡轴发动机试飞平台设计与试验验证[J]. 科学技术与工程, 2021, 21(2): 820-824.

    ZHAO H G, GUO J N, WANG J Q. Design and test verification of a turboshaft engine flight test platform [J]. Science Technology and Engineering, 2021, 21(2): 820-824(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(294) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return