Volume 49 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
LI X,NIU B N,LIU H N,et al. A hybrid method for rare time series classification with FastDTW and SBD[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1523-1532 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0471
Citation: LI X,NIU B N,LIU H N,et al. A hybrid method for rare time series classification with FastDTW and SBD[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1523-1532 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0471

A hybrid method for rare time series classification with FastDTW and SBD

doi: 10.13700/j.bh.1001-5965.2021.0471
Funds:  National Natural Science Foundation of China (62072326); Key Research and Development Plan of Shanxi Province (201903D421007); Open Fund of Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology (201903)
More Information
  • Corresponding author: E-mail:niubaoning@tyut.edu.cn
  • Received Date: 19 Aug 2021
  • Accepted Date: 02 Jan 2022
  • Publish Date: 10 Jan 2022
  • Rare time series classification (RTSC) is widely used in astronomical observation and other fields. Aiming at the problems of low accuracy and high time cost in the current rare time series classification methods for large-scale data, RTSC-FS is proposed, which takes the short-time scale rare celestial body light change events in astronomical observations as the research object. The dynamic time wrapping (DTW) enhancement FastDTW and SBD are combined in RTSC-FS to estimate sequence distance. The former has low computational complexity, excellent measurement accuracy, while the latter has fast computational speed. Utilizing additional time-saving data preprocessing methods such as resampling, window function smoothing, standardized data, and sliding window filtering. On the time series data set of magnitude changes recorded by the ground-based wide-angle camera (GWAC), RTSC-FS found 44 curves with flare characteristics from approximately 7.91 million days of light change data. The recall rate is 60.27%, and the precision rate is 34.65%. Compared with the Baseline, the number of discoveries is larger, and the recall rate and accuracy rate have been improved.

     

  • loading
  • [1]
    MINOR A C, DU Z, SUN Y, et al. GPU accelerated anomaly detection of large scale light curves[C]//2020 IEEE High Performance Extreme Computing Conference (HPEC). Piscataway: IEEE Press, 2020: 1-7.
    [2]
    CORDIER B, WEI J, ATTEIA J L, et al. The SVOM gamma-ray burst mission[EB/OL]. (2015-11-10)[2021-08-01].
    [3]
    BI J, FENG T Z, YUAN H T. Real-time and short-term anomaly detection for GWAC light curves[J]. Computers in Industry, 2018, 97: 76-84. doi: 10.1016/j.compind.2018.01.021
    [4]
    付夏楠, 黄垒, 魏建彦. Mini-GWAC控制系统的故障诊断专家系统[J]. 天文研究与技术, 2016, 13(3): 366-372.

    FU X N, HUANG L, WEI J Y. The fault diagnosis expert system of Mini-GWAC[J]. Astronomical Research & Technology, 2016, 13(3): 366-372(in Chinese).
    [5]
    BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Palo Alto: AAAI Press, 1994: 359-370.
    [6]
    SALVADOR S, CHAN P. Toward accurate dynamic time warping in linear time and space[J]. Intelligent Data Analysis, 2007, 11(5): 561-580. doi: 10.3233/IDA-2007-11508
    [7]
    LAHRECHE A, BOUCHEHAM B. A fast and accurate similarity measure for long time series classification based on local extrema and dynamic time warping[J]. Expert Systems with Applications, 2021, 168: 114374. doi: 10.1016/j.eswa.2020.114374
    [8]
    CHANG X, TUNG F, MORI G. Learning discriminative prototypes with dynamic time warping[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2021: 8391-8400.
    [9]
    PAPARRIZOS J, GRAVANO L. K-Shape: Efficient and accurate clustering of time series[J]. ACM SIGMOD Record, 2016, 45(1): 69-76. doi: 10.1145/2949741.2949758
    [10]
    CHEN H, SHU L C, XIA J, et al. Mining frequent patterns in a varying-size sliding window of online transactional data streams[J]. Information Sciences, 2012, 215: 15-36. doi: 10.1016/j.ins.2012.05.007
    [11]
    SCHÄFER P, LESER U. Fast and accurate time series classification with WEASEL[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 637-646.
    [12]
    XU F. Algorithm to remove spectral leakage, close-in noise, and its application to converter test[C]//IEEE Instrumentation and Measurement Technology Conference. Piscataway: IEEE Press, 2007: 1038-1042.
    [13]
    CLAEYS T, VANOOST D, PEUTEMAN J, et al. Removing the spectral leakage in time-domain based near-field scanning measurements[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1329-1337. doi: 10.1109/TEMC.2015.2447051
    [14]
    ABANDA A, MORI U, LOZANO J A. A review on distance based time series classification[J]. Data Mining and Knowledge Discovery, 2019, 33(2): 378-412. doi: 10.1007/s10618-018-0596-4
    [15]
    RAKTHANMANON T, KEOGH E. Fast shapelets: A scalable algorithm for discovering time series shapelets[C]//Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2013: 668-676.
    [16]
    LI G Z, CHOI B, XU J L, et al. Efficient shapelet discovery for time series classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(3): 1149-1163. doi: 10.1109/TKDE.2020.2995870
    [17]
    GRABOCKA J, SCHILLING N, WISTUBA M, et al. Learning time-series shapelets[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 392-401.
    [18]
    YE L, KEOGH E. Time series shapelets: A novel technique that allows accurate, interpretable and fast classification[J]. Data Mining and Knowledge Discovery, 2011, 22(1-2): 149-182. doi: 10.1007/s10618-010-0179-5
    [19]
    JEONG Y S, JEONG M K, OMITAOMU O A. Weighted dynamic time warping for time series classification[J]. Pattern Recognition, 2011, 44(9): 2231-2240. doi: 10.1016/j.patcog.2010.09.022
    [20]
    REBBAPRAGADA U, PROTOPAPAS P, BRODLEY C E, et al. Finding anomalous periodic time series[J]. Machine Learning, 2009, 74(3): 281-313. doi: 10.1007/s10994-008-5093-3
    [21]
    HYNDMAN R J, WANG E, LAPTEV N. Large-scale unusual time series detection[C]//IEEE International Conference on Data Mining Workshop(ICDMW). Piscataway: IEEE Press, 2016: 1616-1619.
    [22]
    IMANI S, ABDOLI A, KEOGH E. Time2Cluster: Clustering time series using neighbor information[C]//Proceedings of the 38th International Conference on Machine Learning(ICML). [S.l.]: [s.n.], 2021: 1-5.
    [23]
    MBOUOPDA M F. Uncertain time series classification[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence. [S.l.]: [s.n.], 2021: 4903-4904. ​
    [24]
    DOUZAS G, BACAO F, LAST F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[J]. Information Sciences, 2018, 465: 1-20. doi: 10.1016/j.ins.2018.06.056
    [25]
    MA Q L, ZHENG Z J, ZHENG J W, et al. Joint-label learning by dual augmentation for time series classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021, 35: 8847-8855.
    [26]
    KANG Q, CHEN X S, LI S S, et al. A noise-filtered under-sampling scheme for imbalanced classification[J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4263-4274. doi: 10.1109/TCYB.2016.2606104
    [27]
    GÜNNEMANN N, PFEFFER J. Cost matters: A new example-dependent cost-sensitive logistic regression model[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2017: 210-222.
    [28]
    BO S. Research on the classification of high dimensional imbalanced data based on the optimizational of random forest algorithm[C]//2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). Piscataway: IEEE Press, 2017: 228-231.
    [29]
    LEE D, LEE S, YU H. Learnable dynamic temporal pooling for time series classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021, 35: 8288-8296.
    [30]
    YAMAGUCHI A, NISHIKAWA T. One-class learning time-series shapelets[C]//2018 IEEE International Conference on Big Data. Piscataway: IEEE Press, 2019: 2365-2372.
    [31]
    TAVENARD R, FAOUZI J, VANDEWIELE G, et al. Tslearn, a machine learning toolkit for time series data[J]. Journal of Machince Learning Research, 2020, 21(118): 1-6.
    [32]
    TESTA A, GALLO D, LANGELLA R. On the processing of harmonics and interharmonics: Using Hanning window in standard framework[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 28-34. doi: 10.1109/TPWRD.2003.820437
    [33]
    GARG M, BANSAL R K, BANSAL S. Reducing power dissipation in FIR filter: An analysis[J]. Signal Processing:An International Journal (SPIJ), 2010, 4(1): 62-67.
    [34]
    CHAKRABORTY S. Advantages of Blackman window over Hamming window method for designing FIR filter[J]. International Journal of Computer Science and Engineering Technology, 2013, 4(8): 1181-1189.
    [35]
    SULISTYANINGSIH S, PUTRANTO P, QURRACHMAN T, et al. Performance comparison of Blackman, Bartlett, Hanning and Kaiser window for radar digital signal processing[C]//2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). Piscataway: IEEE Press, 2020: 391-394.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(315) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return