Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
HAN M T,XU Z C,CHANG Q,et al. Soil moisture retrieval using Beidou GEO satellite interference signal power[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1661-1670 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0478
Citation: HAN M T,XU Z C,CHANG Q,et al. Soil moisture retrieval using Beidou GEO satellite interference signal power[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1661-1670 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0478

Soil moisture retrieval using Beidou GEO satellite interference signal power

doi: 10.13700/j.bh.1001-5965.2021.0478
Funds:  National Natural Science Foundation of China (41774028); Post Doctoral Innovative Talent Support Program (BX20200039)
More Information
  • Corresponding author: E-mail:by1602112@buaa.edu.cn
  • Received Date: 20 Aug 2021
  • Accepted Date: 20 Nov 2021
  • Publish Date: 30 Nov 2021
  • Soil moisture retrieval using Beidou geostationary Earth orbit (GEO) interference signal power was studied. Current researches mainly establish empirical models for retrieving soil moisture. Therefore, a semi-empirical retrieval method was proposed. Taking the advantage of Beidou GEO satellite’s stable geometric configuration relative to the earth, this method utilized the interference amplitude metric obtained in two consecutive days to cancel the influence of the power of the transmitted signal, therefore, achieving the retrieval of the reflection coefficient. Then, based on the reflection coefficient theoretical model under the influence of cross-polarization , a semi-empirical soil moisture retrieval model was constructed. Finally, the proposed method and model are validated through simulations and experiments. The simulation results showed that the proposed method and model can better adapt to the nonlinear situation encountered in the retrieval process. Finally, the experiment results show that the root mean square error of soil moisture retrieval is less than 0.02 cm3 ·cm−3, and the correlation coefficient exceeds 0.8.

     

  • loading
  • [1]
    裴悦琨, 韩心新. GNSS-R探测土壤湿度综述[J]. 大地测量与地球动力学, 2021, 41(2): 140-144. doi: 10.14075/j.jgg.2021.02.006

    PEI Y K, HAN X X. Overview of GNSS-R technique for soil moisture detection[J]. Journal of Geodesy and Geodynamics, 2021, 41(2): 140-144(in Chinese). doi: 10.14075/j.jgg.2021.02.006
    [2]
    LI F, PENG X F, CHEN X W, et al. Analysis of key issues on GNSS-R soil moisture retrieval based on different antenna patterns[J]. Sensors, 2018, 18(8): 2498. doi: 10.3390/s18082498
    [3]
    EDOKOSSI K, CALABIA A, JIN S G, et al. GNSS-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications[J]. Remote Sensing, 2020, 12(4): 614. doi: 10.3390/rs12040614
    [4]
    MARTÍN-NEIRA M. A pasive reflectometry and interferometry system (PARIS) application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331-355.
    [5]
    ZHENG N Q, CHEN P, LI Z. Accuracy analysis of ground-based GNSS-R sea level monitoring based on multi GNSS and multi SNR[J]. Advances in Space Research, 2021, 68(4): 1789-1801. doi: 10.1016/j.asr.2021.04.024
    [6]
    GAO F, XU T H, MENG X Y, et al. A coastal experiment for GNSS-R code-level altimetry using BDS-3 new civil signals[J]. Remote Sensing, 2021, 13(7): 1378. doi: 10.3390/rs13071378
    [7]
    LIU B J, WAN W, HONG Y. Can the accuracy of sea surface salinity measurement be improved by incorporating spaceborne GNSS-reflectometry?[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 3-7. doi: 10.1109/LGRS.2020.2967472
    [8]
    LARSON K M, SMALL E E, GUTMANN E, et al. Using GPS multipath to measure soil moisture fluctuations: Initial results[J]. GPS Solutions, 2008, 12(3): 173-177. doi: 10.1007/s10291-007-0076-6
    [9]
    LARSON K M, SMALL E E, GUTMANN E D, et al. Use of GPS receivers as a soil moisture network for water cycle studies[J]. Geophysical Research Letters, 2008, 35(24): L24405. doi: 10.1029/2008GL036013
    [10]
    JIA Y, JIN S G, SAVI P, et al. Modeling and theoretical analysis of GNSS-R soil moisture retrieval based on the random forest and support vector machine learning approach[J]. Remote Sensing, 2020, 12(22): 3679. doi: 10.3390/rs12223679
    [11]
    GEREMIA-NIEVINSKI F, HOBIGER T, HAAS R, et al. SNR-based GNSS reflectometry for coastal sea-level altimetry: Results from the first IAG inter-comparison campaign[J]. Journal of Geodesy, 2020, 94(8): 1-15.
    [12]
    MARTÍN A, LUJÁN R, ANQUELA A B. Python software tools for GNSS interferometric reflectometry (GNSS-IR)[J]. GPS Solutions, 2020, 24(4): 94. doi: 10.1007/s10291-020-01010-0
    [13]
    CHEW C C, SMALL E E, LARSON K M, et al. Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 537-543.
    [14]
    张楠, 严颂华, 王文伟. 北斗GEO卫星微动条件下的GNSS-R土壤湿度反演[J]. 科学技术与工程, 2019, 19(9): 154-161.

    ZHANG N, YAN S H, WANG W W. Soil moisture inversion based on GNSS-R under the micro-motion condition of Beidou GEO satellites[J]. Science Technology and Engineering, 2019, 19(9): 154-161(in Chinese).
    [15]
    邹文博, 张波, 洪学宝, 等. 利用北斗GEO卫星反射信号反演土壤湿度[J]. 测绘学报, 2016, 45(2): 199-204. doi: 10.11947/j.AGCS.2016.20150135

    ZOU W B, ZHANG B, HONG X B, et al. Soil moisture retrieval using reflected signals of BeiDou GEO satellites[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 199-204(in Chinese). doi: 10.11947/j.AGCS.2016.20150135
    [16]
    杨磊, 吴秋兰, 张波, 等. SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法[J]. 北京航空航天大学学报, 2016, 42(6): 1134-1141. doi: 10.13700/j.bh.1001-5965.2015.0656

    YANG L, WU Q L, ZHANG B, et al. SVRM-assisted soil moisture retrieval method using reflected signal from BeiDou GEO satellites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1134-1141(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0656
    [17]
    班伟. 利用GNSS反射信号反演水位、积雪厚度和土壤湿度的方法研究[D]. 武汉: 武汉大学, 2017.

    BAN W. Research on retrieving water level, snow depth and soil moisture using GNSS-reflected signal[D]. Wuhan: Wuhan University, 2017 (in Chinese).
    [18]
    BAN W, YU K G, ZHANG X H. GEO-satellite-based reflectometry for soil moisture estimation: Signal modeling and algorithm development[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1829-1838. doi: 10.1109/TGRS.2017.2768555
    [19]
    李培昊. 基于北斗GEO卫星信噪比的土壤湿度反演[D]. 成都: 西南交通大学, 2019.

    LI P H. Soil moisture inversion based on Beidou GEO satellite signal-to-noise ratio[D]. Chengdu: Southwest Jiaotong University, 2019 (in Chinese).
    [20]
    ZAVOROTNY V U, LARSON K M, BRAUN J J, et al. A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1): 100-110. doi: 10.1109/JSTARS.2009.2033608
    [21]
    BALANIS C A. Antenna theory analysis & design[M]. New York: John Wiley, 1996
    [22]
    万玮, 李黄, 洪阳. 作为外辐射源雷达的GNSS-R遥感多极化问题[J]. 雷达学报, 2014, 3(6): 641-651.

    WAN W, LI H, HONG Y. Issues on multi-polarization of GNSS-R for passive radar detection[J]. Journal of Radars, 2014, 3(6): 641-651(in Chinese).
    [23]
    刘军, 赵少杰, 蒋玲梅, 等. 微波波段土壤的介电常数模型研究进展[J]. 遥感信息, 2015, 30(1): 5-13. doi: 10.3969/j.issn.1000-3177.2015.01.002

    LIU J, ZHAO S J, JIANG L M, et al. Research progress on dielectric constant model of soil at microwave frequency[J]. Remote Sensing Information, 2015, 30(1): 5-13(in Chinese). doi: 10.3969/j.issn.1000-3177.2015.01.002
    [24]
    HALLIKAINEN M T, ULABY F T, DOBSON M C, et al. Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, 23(1): 25-34. doi: 10.1109/TGRS.1985.289497
    [25]
    REES W G. Physical principles of remote sensing[M]. Cambridge: Cambridge University Press, 2013.
    [26]
    DAVIES H. The reflection of electromagnetic waves from a rough surface[J]. Proceedings of the IEE - Part IV:Institution Monographs, 1954, 101(7): 209-214. doi: 10.1049/pi-4.1954.0025
    [27]
    WAN W, LARSON K M, SMALL E E, et al. Using geodetic GPS receivers to measure vegetation water content[J]. GPS Solutions, 2015, 19(2): 237-248. doi: 10.1007/s10291-014-0383-7
    [28]
    ZHANG S B, ROUSSEL N, BONIFACE K, et al. Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop[J]. Hydrology and Earth System Sciences, 2017, 21(9): 4767-4784. doi: 10.5194/hess-21-4767-2017
    [29]
    WIGNERON J P, CALVET J C, PELLARIN T, et al. Retrieving near-surface soil moisture from microwave radiometric observations: Current status and future plans[J]. Remote Sensing of Environment, 2003, 85(4): 489-506. doi: 10.1016/S0034-4257(03)00051-8
    [30]
    AL-KHALDI M M, JOHNSON J T, O’BRIEN A J, et al. Time-series retrieval of soil moisture using CYGNSS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4322-4331. doi: 10.1109/TGRS.2018.2890646
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views(172) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return