Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
XUE Y,HE F,GU X Y. UAV information interaction topology generation considering task allocation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1787-1795 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0486
Citation: XUE Y,HE F,GU X Y. UAV information interaction topology generation considering task allocation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1787-1795 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0486

UAV information interaction topology generation considering task allocation

doi: 10.13700/j.bh.1001-5965.2021.0486
Funds:  National Natural Science Foundation of China (62071023)
More Information
  • Corresponding author: E-mail:robinleo@buaa.edu.cn
  • Received Date: 25 Aug 2021
  • Accepted Date: 26 Nov 2021
  • Publish Date: 25 Jan 2022
  • The optimization of information interaction topology for persistent unmanned aerial vehicle (UAV) formation is an important basis for the stability of UAV formation structure and the timeliness of task execution. The existing formation generation algorithms assign weights and generate topologies based on the factor of distance rather than task allocation; therefore, the overall task execution may be too long or even fail, causing unnecessary loss of UAV energy. This study proposes an information interaction topology optimization algorithm considering the factor of task allocation, with the task message transmission time and energy loss being the key optimization objectives, and with the premise of ensuring the stability of UAV formation structure. The key aggregation links performing high real-time communication tasks are preferentially connected, and the penalty term is introduced for the remaining links. Furthermore, the weight factor of task message transmission is taken into account to generate the final information interaction topology. OMNet++ is used for simulation verification. Compared with the information interaction topology generation algorithm considering only the distance factor, the algorithm considering the task factor can reduce the message transmission time by 57.3% and 28.1% at the highest and lowest levels in the formation scenario of 20 UAVs, respectively. The arrival delay of mission-critical messages is reduced by 45.2% to 51.6%. During the mission execution, the energy loss of a single UAV is reduced by 17.5% overall, and the loss per node is reduced by 16.1% on average.

     

  • loading
  • [1]
    LUO F, JIANG C X, DU J, et al. A distributed gateway selection algorithm for UAV networks[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 3(1): 22-33.
    [2]
    DUTTA R, SUN L, PACK D. A decentralized formation and network connectivity tracking controller for multiple unmanned systems[J]. IEEE Transactions on Control Systems Technology, 2018, 26(6): 2206-2213. doi: 10.1109/TCST.2017.2740837
    [3]
    HE B, ZHANG X Y, LI Q Y. Effectiveness measurement of UAV combat in uncertain environment[J]. Journal of Physics:Conference Series, 2018, 1069(1): 012048.
    [4]
    董文奇, 何锋. 大规模UAV编队信息交互拓扑的分级分布式生成[J]. 航空学报, 2021, 42(6): 324380.

    DONG W Q, HE F. Hierarchical and distributed generation of information interaction topology for large scale UAV formation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324380(in Chinese).
    [5]
    LI W, WANG L, LI H B. Design of distributed time-cooperative guidance of multiple flight vehicles with un-controllable velocity[C]//2019 Chinese Control and Decision Conference. Piscataway: IEEE Press, 2019: 2419-2425.
    [6]
    王国强. 面向队形保持的无人机编队信息交互拓扑优化问题的研究[D]. 合肥: 合肥工业大学, 2016: 19.

    WANG G Q. Research on information exchange topology optimization problem of UAV formation during formation keeping[D]. Hefei: Hefei University of Technology, 2016: 19 (in Chinese) .
    [7]
    PRIOLO A, WILLIAMS R K, GASPARRI A, et al. Decentralized algorithms for optimally rigid network constructions[C]//2014 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2014: 5010-5015.
    [8]
    HENDRICKX J M, ANDERSON B D O, DELVENNE J C, et al. Directed graphs for the analysis of rigidity and persistence in autonomous agent systems[J]. International Journal of Robust and Nonlinear Control, 2007, 17(10-11): 960-981. doi: 10.1002/rnc.1145
    [9]
    赵诗雪, 赵太飞, 刘昆, 等. 基于无线紫外光MIMO通信的优化持久编队算法[J]. 激光杂志, 2020, 41(10): 8-13. doi: 10.14016/j.cnki.jgzz.2020.10.008

    ZHAO S X, ZHAO T F, LIU K, et al. Algorithm on optimal persistent formation based on wireless ultraviolet MIMO communication[J]. Laser Journal, 2020, 41(10): 8-13(in Chinese). doi: 10.14016/j.cnki.jgzz.2020.10.008
    [10]
    罗贺, 李晓多, 王国强. 能耗均衡的三维最优持久编队通信拓扑生成[J]. 航空学报, 2022, 43(1): 324922.

    LUO H, LI X D, WANG G Q. Generation of three dimensional optimal persistent formation communication topology with energy consumption equilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 324922(in Chinese).
    [11]
    王金然, 罗小元, 杨帆, 等. 三维最优持久编队拓扑生成策略[J]. 自动化学报, 2015, 41(6): 1123-1130. doi: 10.16383/j.aas.2015.c140474

    WANG J R, LUO X Y, YANG F, et al. Generation strategy of optimal persistent formation topology in 3D space[J]. Acta Automatica Sinica, 2015, 41(6): 1123-1130(in Chinese). doi: 10.16383/j.aas.2015.c140474
    [12]
    REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
    [13]
    LUO X Y, SHAO S K, ZHANG Y Y, et al. Generation of minimally persistent circle formation for a multi-agent system[J]. Chinese Physics B, 2014, 23(2): 614-622.
    [14]
    EREN T, ANDERSON B, MORSE A S, et al. Operations on rigid formations of autonomous agents[J]. Communications in Information and Systems, 2003, 3(4): 223-258. doi: 10.4310/CIS.2003.v3.n4.a2
    [15]
    LUO X Y, LI S B, GUAN X P. Automatic generation of Min-weighted persistent formations[J]. Chinese Physics B, 2009, 18(8): 3104-3114. doi: 10.1088/1674-1056/18/8/002
    [16]
    罗小元, 杨帆, 李绍宝, 等. 多智能体系统的最优持久编队生成策略[J]. 自动化学报, 2014, 40(7): 1311-1319.

    LUO X Y, YANG F, LI S B, et al. Generation of optimally persistent formation for multi-agent systems[J]. Acta Automatica Sinica, 2014, 40(7): 1311-1319(in Chinese).
    [17]
    邵士凯. 多智能体系统最优持久编队生成与圆形编队控制[D]. 秦皇岛: 燕山大学, 2013: 1-66.

    SHAO S K. Optimally persistent formation generation and circle formation control for multi-agent syetems[D]. Qinhuangdao: Yanshan University, 2013: 1-66 (in Chinese).
    [18]
    刘伟, 周绍磊, 祁亚辉, 等. 有向切换通信拓扑下多无人机分布式编队控制[J]. 控制理论与应用, 2015, 32(10): 1422-1427. doi: 10.7641/CTA.2015.50478

    LIU W, ZHOU S L, QI Y H, et al. Distributed formation control for multiple unmanned aerial vehicles with directed switching communication topologies[J]. Control Theory & Applications, 2015, 32(10): 1422-1427(in Chinese). doi: 10.7641/CTA.2015.50478
    [19]
    程潇. 无人机编队组网技术研究[D]. 南京: 南京大学, 2019: 25-38.

    CHENG X. Research on networking techniques of unmanned aerial vehicle formation[D]. Nanjing: Nanjing University, 2019: 25-38 (in Chinese).
    [20]
    张小庆, 胡亚捷. 基于优先级与关键路径的工作流任务调度算法研究[J]. 武汉轻工大学学报, 2021, 40(2): 59-67. doi: 10.3969/j.issn.2095-7386.2021.02.011

    ZHANG X Q, HU Y J. Research on workflow tasks scheduling algorithm based on priority and critical path[J]. Journal of Wuhan Polytechnic University, 2021, 40(2): 59-67(in Chinese). doi: 10.3969/j.issn.2095-7386.2021.02.011
    [21]
    邓启波. 多无人机协同任务规划技术研究[D]. 北京: 北京理工大学, 2014: 28-55.

    DENG Q B. Cooperative task planning of multiple unmanned aerial vehicles[D]. Beijing: Beijing Institute of Technology, 2014: 28-55 (in Chinese) .
    [22]
    马霓, 孙礼, 贾群力, 等. 无线通信网络中点到点对等通信无线链接建立和保持的方法与装置: 中国, CN1527623A[P]. 2004-09-08.

    MA N, SUN L, JIA Q L, et al. Method and apparatus for establishing and retaining point-to-point communication radio chaining in radio communication network: China, CN1527623A[P]. 2004-09-08 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(184) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return