Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
WANG R C,ZHANG G X,WANG X Y,et al. Aerodynamic performance analysis of supercritical airfoil with lower surface jet[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1671-1679 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0489
Citation: WANG R C,ZHANG G X,WANG X Y,et al. Aerodynamic performance analysis of supercritical airfoil with lower surface jet[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1671-1679 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0489

Aerodynamic performance analysis of supercritical airfoil with lower surface jet

doi: 10.13700/j.bh.1001-5965.2021.0489
Funds:  National Natural Science Foundation of China (61901448); Youth Innovation Promotion Association of Chinese Academy of Sciences (2020149)
More Information
  • Corresponding author: E-mail:zhangguoxin@iet.cn
  • Received Date: 25 Aug 2021
  • Accepted Date: 10 Sep 2021
  • Publish Date: 24 Sep 2021
  • To investigate the influence of key parameters of the lower surface jet on aerodynamic performance of supercritical airfoil, a numerical simulation is performed using Reynolds average Navier-Stokes (RANS) equation and Spalart-Allmaras (S-A) turbulence model. By comparing the flow field between the benchmark RAE2822 airfoil and the lower surface jet airfoil, the lower surface jet induces a counterclockwise separation vortex at the trailing edge of the airfoil, deflecting the streamlines downward. This deflection increases the equivalent camber of the airfoil and the suction peak of the leading edge, leading to the aerodynamic performance enhancement of the airfoil. The effects of key parameters such as the jet position, the jet momentum coefficient, the jet angle and the Mach number on the aerodynamic performance of RAE2822 airfoil are explored. The results show that under given conditions, the closer the lower surface jet is to the trailing edge and the greater the momentum coefficient is, the better the aerodynamic performance of the airfoil. The optimal angle of the lower surface jet is 110° at α=0° and 2°, and 160° at α=4°. The aerodynamic performance of the airfoil can be effectively improved at the optimal angles with the Mach number varied from 0.3 to 0.6.

     

  • loading
  • [1]
    SCOTT COLLIS S, JOSLIN R D, SEIFERT A, et al. Issues in active flow control: Theory, control, simulation, and experiment[J]. Progress in Aerospace Sciences, 2004, 40(4-5): 237-289. doi: 10.1016/j.paerosci.2004.06.001
    [2]
    ASHILL P R, FULKER J L, HACKETT K C. A review of recent developments in flow control[J]. The Aeronautical Journal, 2005, 109(1095): 205-232. doi: 10.1017/S0001924000005200
    [3]
    SHMILOVICH A, YADLIN Y. Active flow control for practical high-lift systems[J]. Journal of Aircraft, 2009, 46(4): 1354-1364. doi: 10.2514/1.41236
    [4]
    FU Z J, CHU Y W, CAI Y S, et al. Numerical investigation of circulation control applied to flapless aircraft[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(6): 879-893. doi: 10.1108/AEAT-10-2019-0208
    [5]
    REN F, HU H, TANG H. Active flow control using machine learning: A brief review[J]. Journal of Hydrodynamics, 2020, 32(2): 247-253. doi: 10.1007/s42241-020-0026-0
    [6]
    朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428.

    ZHU Z Q, WU Z C. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411-428(in Chinese).
    [7]
    XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2017, 56: 554-570.
    [8]
    SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134. doi: 10.1061/(ASCE)AS.1943-5525.0000947
    [9]
    雷玉昌, 张登成, 张艳华. 环量控制翼型非定常气动力建模[J]. 北京航空航天大学学报, 2021, 47(10): 209-219. doi: 10.13700/j.bh.1001-5965.2020.0360

    LEI Y C, ZHANG D C, ZHANG Y H. Unsteady aerodynamic modeling of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 209-219(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0360
    [10]
    雷玉昌, 张登成, 张艳华, 等. 脉冲射流对环量控制翼型气动性能的影响[J]. 北京航空航天大学学报, 2022, 48(3): 485-494.

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 485-494(in Chinese).
    [11]
    ZHA G C, CARROLL B F, PAXTON C D, et al. High-performance airfoil using coflow jet flow control[J]. AIAA Journal, 2007, 45(8): 2087-2090. doi: 10.2514/1.20926
    [12]
    LEFEBVRE A, DANO B, BARTOW W B, et al. Performance and energy expenditure of coflow jet airfoil with variation of mach number[J]. Journal of Aircraft, 2016, 53(6): 1757-1767. doi: 10.2514/1.C033113
    [13]
    XU K W, ZHA G C. High control authority three-dimensional aircraft control surfaces using coflow jet[J]. Journal of Aircraft, 2021, 58(1): 72-84. doi: 10.2514/1.C035727
    [14]
    刘沛清, 旷建敏, 屈秋林. 联合射流控制技术的增升效果和机理[J]. 北京航空航天大学学报, 2009, 35(6): 737-740. doi: 10.13700/j.bh.1001-5965.2009.06.011

    LIU P Q, KUANG J M, QU Q L. Effect and mechanism of lift-enhancement of the co-flow jet technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 737-740(in Chinese). doi: 10.13700/j.bh.1001-5965.2009.06.011
    [15]
    许建华, 李凯, 宋文萍, 等. 低雷诺数下协同射流关键参数对翼型气动性能的影响[J]. 航空学报, 2018, 39(8): 122018.

    XU J H, LI K, SONG W P, et al. Influence of co-flow jet key parameters on airfoil aerodynamic performance at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 122018(in Chinese).
    [16]
    张志勇, 王团团, 陈志华, 等. 低雷诺数下吹吸气射流对NACA0012翼型气动性能的影响[J]. 空气动力学学报, 2020, 38(1): 58-65.

    ZHANG Z Y, WANG T T, CHEN Z H, et al. The effect of blowing/suction jet on the aerodynamic performance of airfoil NACA0012 at low Reynolds number[J]. Acta Aerodynamica Sinica, 2020, 38(1): 58-65(in Chinese).
    [17]
    HUANG L, HUANG P G, LEBEAU R P, et al. Numerical study of blowing and suction control mechanism on NACA0012 airfoil[J]. Journal of Aircraft, 2004, 41(5): 1005-1013. doi: 10.2514/1.2255
    [18]
    GENÇ M, KAYNAK Ü. Control of flow separation and transition point over an aerofoil at low Re number using simultaneous blowing and suction[C]//19th AIAA Computational Fluid Dynamics. Reston: AIAA, 2009: 3672.
    [19]
    付云豪, 章卫国, 史静平, 等. 下表面射流对翼型气动性能影响的数值模拟[J]. 哈尔滨工业大学学报, 2021, 53(6): 48-53. doi: 10.11918/201912027

    FU Y H, ZHANG W G, SHI J P, et al. Numerical simulation of influence of jet at lower surface on aerodynamic performance of airfoil[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 48-53(in Chinese). doi: 10.11918/201912027
    [20]
    XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2018, 56(2): 554-570. doi: 10.2514/1.J056223
    [21]
    COOK P, MCDONALD M A, FIRMIN M C P. Aerofoil RAE2822 pressure distributions, and boundary layer and wake measurements, experimental data base for computer program assessment: AGARD Report AR-138[R]. Advanced Guidance for Alliance Research and Development, Part of NATO Science & Technology Organization, 1979, 138: 47.
    [22]
    ENGLAR R, JONES G, ALLAN B, et al. 2-D circulation control airfoil benchmark experiments intended for CFD code validation[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 902.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(8)

    Article Metrics

    Article views(266) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return