Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LI N,GUO Y D,XU C,et al. Design and experiment of cryogenic loop heat pipe of two-dimensional pointing at liquid nitrogen zone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1573-1582 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0500
Citation: LI N,GUO Y D,XU C,et al. Design and experiment of cryogenic loop heat pipe of two-dimensional pointing at liquid nitrogen zone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1573-1582 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0500

Design and experiment of cryogenic loop heat pipe of two-dimensional pointing at liquid nitrogen zone

doi: 10.13700/j.bh.1001-5965.2021.0500
Funds:  National Natural Science Foundation of China (52106067); Outstanding Youth Science Fund of China (2020-JCJQ-ZQ-042); China Postdoctoral Science Foundation (2019M660403)
More Information
  • Corresponding author: E-mail:guoyd@buaa.edu.cn
  • Received Date: 30 Aug 2021
  • Accepted Date: 12 Nov 2021
  • Publish Date: 30 Nov 2021
  • The cooperation of the two-dimensional pointing mechanism and the infrared detector is conducive to the realization of large-scale dynamic tracking, pointing, and rapid positioning of space targets. Coupling the cryogenic loop heat pipe (CLHP) with the two-dimensional pointing mechanism can greatly reduce system complexity, while achieving long-distance heat transmission, and improving detection accuracy and steering flexibility. A two-dimensional pointing CLHP working at the liquid nitrogen zone is designed and developed. The component parameters are introduced, and a pitch and yaw rotation of more than ±90° through the servo motor drive is realized. The thermal vacuum experiment was carried out, examining the effects of different working parameters on the supercritical start and heat transfer limit. The results show that the system designed has a maximum heat transfer capacity of 13 W. Appropriately increasing the filling pressure can help improve the stability and heat transfer capacity of the system, and increasing the auxiliary load of the secondary evaporator can increase the maximum heat transfer ability.

     

  • loading
  • [1]
    朱岩, 白云飞, 王连国, 等. 中国首次火星探测工程有效载荷总体设计[J]. 深空探测学报, 2017, 4(6): 510-514. doi: 10.15982/j.issn.2095-7777.2017.06.002

    ZHU Y, BAI Y F, WANG L G, et al. Integral technical scheme of payloads system for Chinese Mars-1 exploration[J]. Journal of Deep Space Exploration, 2017, 4(6): 510-514(in Chinese). doi: 10.15982/j.issn.2095-7777.2017.06.002
    [2]
    刘成, 谢荣建, 王仕越, 等. 丙烯环路热管补偿器的可视化实验研究[J]. 北京航空航天大学学报, 2020, 46(5): 933-940. doi: 10.13700/j.bh.1001-5965.2019.0322

    LIU C, XIE R J, WANG S Y, et al. Visualization experimental study of compensation chamber of a propylene loop heat pipe[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 933-940(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0322
    [3]
    孟庆亮, 杨涛, 于志, 等. 空间遥感器用环路热管瞬态数值模拟与在轨验证[J]. 北京航空航天大学学报, 2020, 46(11): 2045-2055. doi: 10.13700/j.bh.1001-5965.2019.0584

    MENG Q L, YANG T, YU Z, et al. Transient numerical simulation and on-orbit verification of loop heat pipe used for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2045-2055(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0584
    [4]
    薛好, 谢永奇, 戴华, 等. 加速度场中环路热管温度波动现象分析[J]. 北京航空航天大学学报, 2016, 42(7): 1502-1508. doi: 10.13700/j.bh.1001-5965.2015.0465

    XUE H, XIE Y Q, DAI H, et al. Investigation of temperature fluctuation in loop heat pipe under acceleration fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1502-1508(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0465
    [5]
    郭元东. 15 K~40 K温区深冷环路热管技术的理论与实验研究[D]. 北京: 北京航空航天大学, 2019.

    GUO Y D. Theoretical and experimental investigation of cryogenic loop heat pipe technology operating in 15 K~40 K[D]. Beijing: Beihang University, 2019(in Chinese) .
    [6]
    BAI L, ZHANG L, LIN G, et al. Development of cryogenic loop heat pipes: A review and comparative analysis[J]. Applied Thermal Engineering, 2015, 89: 180-191. doi: 10.1016/j.applthermaleng.2015.06.010
    [7]
    何江, 苗建印, 张红星, 等. 航天器深低温热管技术研究现状及发展趋势[J]. 真空与低温, 2018, 24(1): 1-8.

    HE J, MIAO J Y, ZHANG H X, et al. Current status and development trend of cryogenic heat pipe technologies in spacecraft[J]. Vacuum and Cryogenics, 2018, 24(1): 1-8(in Chinese).
    [8]
    HOANG T T, O’CONNELL T A, KU J, et al. Performance demonstration of hydrogen advanced loop heat pipe for 20-30 K cryocooling of far infrared sensors[C]//Optics and Photonics 2005. Bellingham: SPIE, 2005: 590410.
    [9]
    HOANG T T, O’CONNELL T A, KU J, et al. Design optimization of a hydrogen advanced loop heat pipe for space-based IR sensor and detector cryocooling[C]//SPIE’s 48th Annual Meeting of Optical Science and Technology. Bellingham: SPIE, 2003: 86.
    [10]
    MO Q, LIANG J. Operational performance of a cryogenic loop heat pipe with insufficient working fluid inventory[J]. International Journal of Refrigeration, 2006, 29(4): 519-527. doi: 10.1016/j.ijrefrig.2005.10.011
    [11]
    GULLY P, MO Q, YAN T, et al. Thermal behavior of a cryogenic loop heat pipe for space application[J]. Cryogenics, 2011, 51(8): 420-428. doi: 10.1016/j.cryogenics.2011.04.009
    [12]
    ZHAO Y, YAN T, LIANG J, et al. A new way of supercritical startup of a cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118793. doi: 10.1016/j.ijheatmasstransfer.2019.118793
    [13]
    ZHAO Y, YAN T, LIANG J. Experimental study on a cryogenic loop heat pipe with high heat capacity[J]. International Journal of Heat and Mass Transfer, 2011, 54(15-16): 3304-3308. doi: 10.1016/j.ijheatmasstransfer.2011.03.056
    [14]
    ZHAO Y, WANG N, YAN T, et al. Experimental study on operating characteristics of a cryogenic loop heat pipe without additional power consumption[J]. Applied Thermal Engineering, 2021, 184: 116262. doi: 10.1016/j.applthermaleng.2020.116262
    [15]
    MO Q, LIANG J T. A novel design and experimental study of a cryogenic loop heat pipe with high heat transfer capability[J]. International Journal of Heat and Mass Transfer, 2006, 49(3-4): 770-776. doi: 10.1016/j.ijheatmasstransfer.2005.08.010
    [16]
    李强, 马路, 宣益民. 低温环路热管(CLHP)的实验研究[J]. 工程热物理学报, 2010, 31(1): 122-125.

    LI Q, MA L, XUAN Y M. Experimental investigation of cryogenic loop heat pipe[J]. Journal of Engineering Thermophysics, 2010, 31(1): 122-125(in Chinese).
    [17]
    刘成志, 董德平, 杨帆. 乙烷温区低温环路热管设计与实验[J]. 低温工程, 2011, 28(6): 57-59. doi: 10.3969/j.issn.1000-6516.2011.06.012

    LIU C Z, DONG D P, YANG F. Design and experimental investigations of ethane cryogenic loop heat pipe[J]. Cryogenics, 2011, 28(6): 57-59(in Chinese). doi: 10.3969/j.issn.1000-6516.2011.06.012
    [18]
    张畅, 谢荣建, 张添, 等. 液氮温区平板蒸发器环路热管实验研究[J]. 北京航空航天大学学报, 2019, 45(6): 1211-1217. doi: 10.13700/j.bh.1001-5965.2018.0623

    ZHANG C, XIE R J, ZHANG T, et al. Experimental study on a liquid nitrogen temperature region loop heat pipe with flat evaporator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1211-1217(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0623
    [19]
    BAI L, LIN G, ZHANG H, et al. Experimental study of a nitrogen-charged cryogenic loop heat pipe[J]. Cryogenics, 2012, 52(10): 557-563. doi: 10.1016/j.cryogenics.2012.07.005
    [20]
    BAI L, LIN G, ZHANG H, et al. Operating characteristics of a miniature cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2012, 55(25-26): 8093-8099. doi: 10.1016/j.ijheatmasstransfer.2012.08.044
    [21]
    GUO Y, LIN G, BAI L, et al. Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design[J]. Energy Conversion and Management, 2016, 118: 353-363. doi: 10.1016/j.enconman.2016.04.022
    [22]
    GUO Y, LIN G, HE J, et al. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe[J]. Energy Conversion and Management, 2017, 134: 178-187. doi: 10.1016/j.enconman.2016.12.038
    [23]
    GUO Y, LIN G, HE J, et al. Supercritical startup strategy of cryogenic loop heat pipe with different working fluids[J]. Applied Thermal Engineering, 2019, 155: 267-276. doi: 10.1016/j.applthermaleng.2019.04.008
    [24]
    GUO Y, LIN G, BAI L, et al. Experimental study of the thermal performance of a neon cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1266-1274. doi: 10.1016/j.ijheatmasstransfer.2017.12.138
    [25]
    GUO Y, LIN G, ZHANG H, et al. Investigation on thermal behaviours of a methane charged cryogenic loop heat pipe[J]. Energy, 2018, 157: 516-525. doi: 10.1016/j.energy.2018.05.133
    [26]
    周顺涛, 莫青, 张红星, 等. 深冷环路热管传热性能研究[J]. 航天器工程, 2010, 19(3): 91-95. doi: 10.3969/j.issn.1673-8748.2010.03.014

    ZHOU S T, MO Q, ZHANG H X, et al. Experimental study on heat transfer performance of cryogenic loop heat pipe[J]. Spacecraft Engineering, 2010, 19(3): 91-95(in Chinese). doi: 10.3969/j.issn.1673-8748.2010.03.014
    [27]
    周顺涛, 莫青, 张红星, 等. 深冷环路热管超临界启动实验研究[J]. 低温工程, 2010(3): 18-22. doi: 10.3969/j.issn.1000-6516.2010.03.004

    ZHOU S T, MO Q, ZHANG H X, et al. Experimental investigation on supercritical startup of cryogenic loop heat pipe[J]. Cryogenics, 2010(3): 18-22(in Chinese). doi: 10.3969/j.issn.1000-6516.2010.03.004
    [28]
    KU J, ROBINSON F. Thermal vacuum testing of a helium loop heat pipe for large area cryocooling[C]//46th International Conference on Environmental Systems. [S.1.]: [s.n.], 2016.
    [29]
    HOANG T T, O’CONNELL T A, KHRUSTALEV D K. Development of a flexible advanced loop heat pipe for across-gimball cryocooling[C]//SPIE 48th Annual Meeting of Optical Science and Technology. Bellingham: SPIE, 2003, 5172: 68-76.
    [30]
    SHAEFFER R, HU H, CHUNG J N. An experimental study on liquid nitrogen pipe chilldown and heat transfer with pulse flows[J]. International Journal of Heat and Mass Transfer, 2013, 67: 955-966. doi: 10.1016/j.ijheatmasstransfer.2013.08.037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views(207) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return