Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
ZHANG Y,LIU J. Precise orbit determination method for angle-only observation data of space debris based on angle conversion theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1600-1605 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0507
Citation: ZHANG Y,LIU J. Precise orbit determination method for angle-only observation data of space debris based on angle conversion theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1600-1605 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0507

Precise orbit determination method for angle-only observation data of space debris based on angle conversion theory

doi: 10.13700/j.bh.1001-5965.2021.0507
Funds:  National Natural Science Foundation of China (12073045,11803052)
More Information
  • Corresponding author: E-mail:liujing@bao.ac.cn
  • Received Date: 01 Sep 2021
  • Accepted Date: 25 Jan 2022
  • Publish Date: 23 Feb 2022
  • On the basis of the angle conversion method, a brand-new accurate orbit determination technique for space debris was developed. First, based on the commonly used two-line-element (TLE) data application requirements, a TLE precise orbit determination model based on the SGP4/SDP4 forecast model was established according to the differential idea. Secondly, the advantages and disadvantages of the original definition method and the right ascension projection method were discussed by taking right ascension-declination observation as an example. Then the angle conversion method was proposed, which converts the two-element angle data into three-element angle data. Finally verifies based on the simulation that when the observation data is concentrated in the direction of the zenith of the station, the angle conversion method could increase the speed of precise orbit determination by about 25%, and increase the accuracy of orbit determination by 2−10 times.

     

  • loading
  • [1]
    BRAUN V, LEMMENS S, REIHS B, et al. Analysis of breakup events[C]//Proceedings of the 7th European Conference on Space Debris, 2017: 1-12.
    [2]
    PIROVANO L, PRINCIPE G, ARMELLIN R. Data association and uncertainty pruning for tracks determined on short arcs[J]. Celestial Mechanics and Dynamical Astronomy, 2020, 132: 6-30. doi: 10.1007/s10569-019-9947-8
    [3]
    CICALO S, BECK J, MINISCI E, et al. GOCE radar-based orbit determination for re-entry predictions and comparison with GPS-based POD[C]//Proceedings of the 7th European Conference on Space Debris, 2017: 1-14.
    [4]
    刘林, 张强, 廖新浩. 人卫精密定轨中的算法问题[J]. 中国科学(A辑), 1998, 28(5): 848-856.

    LIU L, ZHANG Q, LIAO X H. Algorithm problems in precise orbit determination of artificial earth satellite[J]. Science in China(Series A), 1998, 28(5): 848-856(in Chinese).
    [5]
    程昊文. 航天器轨道理论在空间目标编目管理中的应用[D]. 南京: 南京大学, 2012: 9-11.

    CHENG H W. The application of satellite orbit theory in maintaining the space object catalog[D]. Nanjing: Nanjing University, 2012: 9-11(in Chinese).
    [6]
    MARSHALL J A, LUTHCKE S B. Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination[J]. Journal of Spacecraft and Rockets, 1994, 31(1): 99-105. doi: 10.2514/3.26408
    [7]
    BOCK H, HUGENTOBLER U, SPRINGER T A, et al. Efficient precise orbit determination of LEO satellites using GPS[J]. Advances in Space Research, 2002, 30(2): 295-300. doi: 10.1016/S0273-1177(02)00298-3
    [8]
    张宇, 孔静, 陈明, 等. CE5T拓展试验轨道精度分析[J]. 宇航学报, 2019, 40(9): 1014-1023. doi: 10.3873/j.issn.1000-1328.2019.09.005

    ZHANG Y, KONG J, CHEN M, et al. Orbit accuracy analysis for CE5T extended mission[J]. Journal of Astronautics, 2019, 40(9): 1014-1023(in Chinese). doi: 10.3873/j.issn.1000-1328.2019.09.005
    [9]
    张宇, 周立, 孔静, 等. 长期姿控扰动情况下空间实验室轨道影响分析及建模[J]. 宇航学报, 2017, 38(12): 1273-1280. doi: 10.3873/j.issn.1000-1328.2017.12.003

    ZHANG Y, ZHOU L, KONG J, et al. Analysis and modeling of space laboratory orbit under continuous attitude control perturbation[J]. Journal of Astronautics, 2017, 38(12): 1273-1280(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.12.003
    [10]
    Committee for the Assessment of the U. S. Air Force’s Astrodynamics Standards. Continuing Kepler’s quest: Assessing air force space command’s astrodynamics standards[S]. Washington, D. C. : The National Academies Press, 2012: 21-26.
    [11]
    GRZEGORZ B, KRZYSZTOF S, RADOSŁAW Z, et al. Determination of precise Galileo orbits using combined GNSS and SLR observations[J]. GPS Solution, 2021, 25: 11. doi: 10.1007/s10291-020-01045-3
    [12]
    VALLADO D A, FINKLEMAN D. A critical assessment of satellite drag and atmospheric density modeling: AIAA 2008-6442[R]. Reston: AIAA, 2008.
    [13]
    韦栋, 赵长印. SGP4/SDP4模型精度分析[J]. 天文学报, 2009, 50(3): 332-339. doi: 10.3321/j.issn:0001-5245.2009.03.010

    WEI D, ZHAO C Y. Analysis on the accuracy of the SGP4/SDP4 model[J]. Acta Astronomica Sinica, 2009, 50(3): 332-339(in Chinese). doi: 10.3321/j.issn:0001-5245.2009.03.010
    [14]
    VALLADO D A. Fundamental of astrodynamics and application [M]. Hawthorne: Microcosm Press, 2007: 113-115.
    [15]
    刘林, 汤靖师. 卫星轨道理论与应用[M]. 北京: 电子工业出版社, 2015: 427-428.

    LIU L, TANG J S. Satellite orbit theory and application[M]. Beijing: Publishing House of Electronics Industry, 2015: 427-428(in Chinese).
    [16]
    陈磊, 韩蕾, 百显宗, 等. 空间目标轨道力学与误差分析[M]. 北京: 国防工业出版社, 2010: 93-95.

    CHEN L, HAN L, BAI X Z, et al. Orbit dynamics and error analysis of space object[M]. Beijing: National Defense Industry Press, 2010: 93-95(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views(174) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return