Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
FU J W,WANG C. Configuration and multibody separation scheme of compact missile swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1630-1638 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0508
Citation: FU J W,WANG C. Configuration and multibody separation scheme of compact missile swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1630-1638 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0508

Configuration and multibody separation scheme of compact missile swarm

doi: 10.13700/j.bh.1001-5965.2021.0508
More Information
  • Corresponding author: E-mail:fjw15210591734@163.com
  • Received Date: 01 Sep 2021
  • Accepted Date: 11 Oct 2021
  • Publish Date: 18 Feb 2022
  • One type of missile swarm system is proposed, where numerous small UAVs are compressed in a missile carrier, to solve the weakness of swarm penetration capability and operational radius while speeding up the formation of cooperation. It uses tactics by multistage transport, making the swarm deploy rapidly. Taking advantage of the compatibility design, aerodynamic configuration optimization design technology, layout selection, numerical simulation analysis, and wind tunnel test, the research achieves a kind of compact missile swarm layout design, one missile can carry 80 small UAVs by arranging UAVs circumferentially around the cylinder. In order to overcome the challenge of multibody separation design, a swarm can safely separate by adopting an optimum separation approach that has been confirmed by improved delayed detached eddy simulation and nested grid. Finally, the design scheme can not only ensure the efficiency of saturation attack but also improve the capability of penetration and endurance, meeting the requirement of future strong confrontation battlefield.

     

  • loading
  • [1]
    蒋琪, 申超, 张冬青. 认知/动态与分布式作战对导弹武器装备发展影响研究[J]. 战术导弹技术, 2016(3): 1-6. doi: 10.16358/j.issn.1009-1300.2016.03.01

    JIANG Q, SHEN C, ZHANG D Q. Research on the influence of cognitive/dynamic and distributed operations on the development of missile weapons and equipment[J]. Tactical Missile Technology, 2016(3): 1-6(in Chinese). doi: 10.16358/j.issn.1009-1300.2016.03.01
    [2]
    时东飞, 蔡疆, 黄松华, 等. 美国空军“战斗云”作战理念及启示[J]. 指挥信息系统与技术, 2017, 8(3): 27-32. doi: 10.15908/j.cnki.cist.2017.03.005

    SHI D F, CAI J, HUANG S H, et al. Operational concept and enlightenment of United States air force “combat cloud”[J]. Command Information System and Technology, 2017, 8(3): 27-32(in Chinese). doi: 10.15908/j.cnki.cist.2017.03.005
    [3]
    王彤, 李磊, 蒋琪. “进攻性蜂群使能战术”项目推进无人蜂群能力发展分析[J]. 战术导弹技术, 2020(1): 33-38. doi: 10.16358/j.issn.1009-1300.2020.1.503

    WANG T, LI L, JIANG Q. Offensive swarm-enabled tactics program promotes the development of unmanned swarm capability[J]. Tactical Missile Technology, 2020(1): 33-38(in Chinese). doi: 10.16358/j.issn.1009-1300.2020.1.503
    [4]
    贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报. 2020, 41(S1): 723738.

    JIA Y N, TIAN S Y, LI Q. Developemnt of unnamed aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica. 2020, 41(S1): 723738 (in Chinese).
    [5]
    HURST J. Robotic swarms in offensive maneuver[J]. Joint Force Quarterly, 2017(87): 105-111.
    [6]
    FISHER N , GILBERT G R. Unmanned systems in support of future medical operations in dense urban environments[J]. Journal of Article, 2016, 4(14): 48.
    [7]
    SADRAEY M H. Manned-unmanned aircraft teaming[C]//2018 IEEE Aerospace Conference. Piscataway: IEEE Press, 2018: 1-12.
    [8]
    United States of America Defence Science Board. Summer Research Report of Defence Science Board—Autonomous Technology: 20301-3140 [R]. Washington D. C : United States of America Defence Science Board, 2016
    [9]
    SATHE A, PANT R. Conceptual design studies of an unmanned combat aerial vehicle[C]// AIAA Aviation Technology, Integration, and Operations. Reston: AIAA, 2013.
    [10]
    宋威, 艾邦成. 多体分离动力学研究进展[J]. 航空学报, 2022, 43(9): 25590. doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209015

    SONG W, AI B C. Multibody separation dynamics: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 25590(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209015
    [11]
    JEYAKUMAR D, RAO B N. Dynamics of satellite separation system[J]. Journal of Sound and Vibration, 2006, 297(1-2): 444-455. doi: 10.1016/j.jsv.2006.03.035
    [12]
    唐上钦, 黄长强, 翁兴伟. 考虑气动干扰的导弹内埋式发射弹道研究[J]. 弹箭与制导学报, 2013, 33(3): 138-142. doi: 10.3969/j.issn.1673-9728.2013.03.038

    TANG S Q, HUANG C Q, WENG X W. The study on trajectory of missile separating from cavity with aerodynamic interference considered[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(3): 138-142(in Chinese). doi: 10.3969/j.issn.1673-9728.2013.03.038
    [13]
    WANG Y J, WANG H B, QIAN F X, et al. Investigation on separation interference of typical multi-body vehicle in supersonic conditions[C]// 2013 Fourth International Conference on Digital Manufacturing & Automation. Piscataway: IEEE Press, 2013: 732-735.
    [14]
    张群峰, 闫盼盼, 黎军. 内埋式弹舱与弹体相互影响的精细模拟[J]. 兵工学报, 2016, 37(12): 2366-2376. doi: 10.3969/j.issn.1000-1093.2016.12.024

    ZHANG Q F, YAN P P, LI J. Elaborate simulation of interaction effect between internal weapon bay and missile[J]. Acta Armamentarii, 2016, 37(12): 2366-2376(in Chinese). doi: 10.3969/j.issn.1000-1093.2016.12.024
    [15]
    黄蓓, 王浩, 王帅, 等. 薄片状体沉降过程中的多体干扰流场特性[J]. 弹道学报, 2012, 24(1): 41-46. doi: 10.3969/j.issn.1004-499X.2012.01.009

    HUANG B, WANG H, WANG S, et al. Flow field characteristics of multi-plates interference in descent[J]. Journal of Ballistics, 2012, 24(1): 41-46(in Chinese). doi: 10.3969/j.issn.1004-499X.2012.01.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views(322) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return