Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
SHI Y,WAN Z Q,WU Z G,et al. Aerodynamic order reduction method for elastic aircraft flight dynamics simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1689-1706 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0510
Citation: SHI Y,WAN Z Q,WU Z G,et al. Aerodynamic order reduction method for elastic aircraft flight dynamics simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1689-1706 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0510

Aerodynamic order reduction method for elastic aircraft flight dynamics simulation

doi: 10.13700/j.bh.1001-5965.2021.0510
More Information
  • Corresponding author: E-mail:wuzhigang@buaa.edu.cn
  • Received Date: 02 Sep 2021
  • Accepted Date: 22 Nov 2021
  • Publish Date: 30 Dec 2021
  • We develop an aeroelasticity and flight dynamics simulation model with nonlinear aerodynamic reduced order model for low-speed solar unmanned aerial vehicles under high angle of attack caused by gust. Five aerodynamic reduced-order models are created in light of the aforementioned issues, and their use in simulating flight dynamics is further explored. The reduced order models include the model based on the autoregressive model with eXogenous inputs (ARX) method, multi-wavelet Volterra series method, back propagation (BP) neural network, radial basis function (RBF) neural network and support vector regression. Then the convergence and the generalization ability of the five models are compared, and a new model with high precision and strong generalization ability is proposed, which is a combination of ARX and neural network model. Taking a solar UAV model as an example, combining an aerodynamic reduced order model with a rigid-elastic coupling dynamic equation, the flight dynamics simulation model of elastic aircraft is established. Lastly, the computational fluid dynamics-computational structural dynamics (CFD-CSD) outputs and the outcomes of the simulation model based on linear aerodynamics are compared with the simulation results to determine how the UAV model responds to gusts. The results show that the performance of the elastic aircraft simulation model in aerodynamic prediction and gust response analysis is better than that of the model based on linear aerodynamics and is in good agreement with the CFD-CSD model, and the simulation efficiency is much higher than that of the CFD-CSD analysis.

     

  • loading
  • [1]
    王少奇, 马东立, 杨穆清, 等. 高空太阳能无人机三维航迹优化[J]. 北京航空航天大学学报, 2019, 45(5): 936-943. doi: 10.13700/j.bh.1001-5965.2018.0511

    WANG S Q, MA D L, YANG M Q, et al. Three-dimensional optimal path planning for high-altitude solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 936-943(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0511
    [2]
    刘藤, 李栋, 黄冉冉, 等. 基于降阶模型的翼型结冰冰形预测方法[J]. 北京航空航天大学学报, 2019, 45(5): 1033-1041. doi: 10.13700/j.bh.1001-5965.2018.0474

    LIU T, LI D, HUANG R R, et al. Ice shape prediction method of aero-icing based on reduced order model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1033-1041(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0474
    [3]
    杨国伟, 王济康. CFD结合降阶模型预测阵风响应[J]. 力学学报, 2008, 40(2): 145-153. doi: 10.3321/j.issn:0459-1879.2008.02.001

    YANG G W, WANG J K. Prediction of gust response by CFD combined with reduced order model[J]. Acta Mechanica Sinica, 2008, 40(2): 145-153(in Chinese). doi: 10.3321/j.issn:0459-1879.2008.02.001
    [4]
    张伟伟, 叶正寅. 基于气动力降阶模型的跨音速气动弹性稳定性分析[J]. 振动工程学报, 2007, 24(6): 768-772.

    ZHANG W W, YE Z Y. Transonic aeroelastic stability analysis based on aerodynamic reduced order model[J]. Journal of Vibration Engineering, 2007, 24(6): 768-772(in Chinese).
    [5]
    师妍, 万志强, 吴志刚, 等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证[J]. 航空学报, 2022, 43(1): 125474.

    SHI Y, WAN Z Q, WU Z Q, et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced order model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 125474(in Chinese).
    [6]
    LIND R, PRAZENICA R J, BRENNER M J, et al. Identifying parameter dependent Volterra kernels to predict aeroelastic instabilities[J]. AIAA Journal, 2005, 43(12): 2496-2502. doi: 10.2514/1.12042
    [7]
    吴志刚, 杨超. 基于Volterra级数的跨音速非定常气动力建模[J]. 北京航空航天大学学报, 2006, 32(4): 373-376. doi: 10.3969/j.issn.1001-5965.2006.04.001

    WU Z G, YANG C. Volterra series based transonic unsteady aerodynamics modeling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(4): 373-376(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.04.001
    [8]
    PRAZENICA R J, REISENTHEL P H, KURDILA A J, et al. Volterra kernel extrapolation for modeling nonlinear aeroelastic systems at novel flight conditions[J]. Journal of Aircraft, 2007, 44(1): 149-162. doi: 10.2514/1.22764
    [9]
    OMRAN A, NEWMAN B. Full envelope nonlinear parameter- varying model approach for atmospheric flight dynamics[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 270-283. doi: 10.2514/1.51577
    [10]
    王云海, 韩景龙, 张兵, 等. 空气动力二阶核函数辨识方法[J]. 航空学报, 2014, 35(11): 2949-2957.

    WANG Y H, HAN J L, ZHANG B, et al. Aerodynamic second order kernel function identification method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2949-2957(in Chinese).
    [11]
    陈森林, 高正红, 饶丹. 基于多小波的Volterra级数非定常气动力建模方法[J]. 航空学报, 2018, 39(1): 121379.

    CHEN S L, GAO Z H, RAO D. Modeling method of unsteady aerodynamics based on multiwavelet Volterra series[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 121379(in Chinese).
    [12]
    王超, 王贵东, 白鹏. 飞行仿真气动力数据机器学习建模方法[J]. 空气动力学学报, 2019, 37(3): 488-497.

    WANG C, WANG G D, BAI P. Machine learning modeling method for aerodynamic data of flight simulation[J]. Acta Aerodynamics Sinica, 2019, 37(3): 488-497(in Chinese).
    [13]
    ZHANG W W, WANG B B, YE Z Y, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028. doi: 10.2514/1.J050581
    [14]
    KOU J Q, ZHANG W W. Reduced-order modeling for nonlinear aeroelasticity with varying Mach numbers[J]. Journal of Aerospace Engineering, 2018, 31(6): 04018105. doi: 10.1061/(ASCE)AS.1943-5525.0000932
    [15]
    KOU J Q, ZHANG W W. Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling[J]. Aerospace Science and Technology, 2017, 67: 309-326. doi: 10.1016/j.ast.2017.04.017
    [16]
    JIANG Y, ZHAO Q, ZHU J. Unsteady aerodynamics modeling using SVM and artificial neural network[C]//Proceedings of the 2015 Chinese Intelligent Automation Conference: Intelligent Information Processing. Berlin : Springer, 2015: 577-585.
    [17]
    WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3): 659-668. doi: 10.1016/j.cja.2015.03.010
    [18]
    CHEN S L, GAO Z H, ZHU X Q, et al. Unstable unsteady aerodynamic modeling based on least squares support vector machines with general excitation[J]. Chinese Journal of Aeronautics, 2020, 33(10): 2499-2509. doi: 10.1016/j.cja.2020.03.009
    [19]
    NARENDRA K, GALLMAN P. An iterative method for the identification of nonlinear systems using a Hammerstein model[J]. IEEE Transactions on Automatic Control, 1966, 11(3): 634-638.
    [20]
    SHENG W, GALBRAITH R A, COTON F N. A modified dynamic stall model for low mach numbers[J]. Journal of Solar Energy Engineering, 2007, 130(3): 653-653.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(10)

    Article Metrics

    Article views(177) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return