Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
SHANG S F,YANG X N,YANG Y,et al. Secondary electron multiplication of aluminum under strong vacuum electromagnetic field[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1606-1613 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0514
Citation: SHANG S F,YANG X N,YANG Y,et al. Secondary electron multiplication of aluminum under strong vacuum electromagnetic field[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1606-1613 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0514

Secondary electron multiplication of aluminum under strong vacuum electromagnetic field

doi: 10.13700/j.bh.1001-5965.2021.0514
More Information
  • Corresponding author: E-mail:shangshengfei@buaa.edu.cn
  • Received Date: 05 Sep 2021
  • Accepted Date: 22 Nov 2021
  • Publish Date: 25 Jan 2022
  • This paper primarily employs the 1D3V particle-in-cell (PIC) method to investigate the rule of multifactor of aluminum material on satellite surface under the strong electromagnetic environment of space in order to study the charge and discharge effect brought on by the strong electromagnetic environment on the satellite surface. The result shows that there is an "easiest" multiplication range for the multifactor effect of aluminum materials under different microwave amplitudes and frequencies. The multifactor rules are: At a specific frequency, the multifactor of aluminum first increases and then decreases with the rising of microwave electric field amplitude, and there is an optimal secondary electron multiplication interval; At a certain amplitude, the multifactor effect of aluminum will first increase and then decrease, and it shows that the multifactor effect should be strong at low frequency and inhibited at high frequency.

     

  • loading
  • [1]
    范费彬, 谢锦林, 陆全明, 等. 空间等离子体磁场重联过程地面实验装置及实验研究概述[J]. 航天器环境工程, 2019, 36(6): 655-661.

    FAN F B, XIE J L, LU Q M, et al. Ground-based experimental study of magnetic reconnection in space plasma environment[J]. Spacecraft Environment Engineering, 2019, 36(6): 655-661 (in Chinese).
    [2]
    盛雪莲, 吴静, 张翀. 中国空间磁层线辐射现象探究[J]. 北京航空航天大学学报, 2018, 44(7): 1504-1513. doi: 10.13700/j.bh.1001-5965.2017.0525

    SHENG X L, WU J, ZHANG C. Space magnetospheric line radiation above China[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1504-1513(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0525
    [3]
    唐萍, 朱光武, 秦国泰, 等. 航天器表面污染物质沉积变化和控制因子评估[J]. 北京航空航天大学学报, 2015, 41(5): 891-896. doi: 10.13700/j.bh.1001-5965.2014.0376

    TANG P, ZHU G W, QIN G T, et al. Changes of contamination deposition on spacecraft surface and evaluation of control factors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 891-896(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0376
    [4]
    周建涛, 蔡伟, 武延鹏, 等. 星敏感器空间辐射效应研究[J]. 宇航学报, 2010, 31(1): 24-30. doi: 10.3873/j.issn.1000-1328.2010.01.003

    ZHOU J T, CAI W, WU Y P, et al. Research on radiation effects of star sensors[J]. Journal of Astronautics, 2010, 31(1): 24-30(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.01.003
    [5]
    韩建伟, 陈睿, 李宏伟, 等. 单粒子效应及充放电效应诱发航天器故障的甄别与机理探讨[J]. 航天器环境工程, 2021, 38(3): 344-350.

    HAN J W, CHEN R, LI H W, et al. The anomalies supposed to be due to the single event effects may be caused by spacecraft charging induced electrostatic discharge[J]. Spacecraft Environment Engineering, 2021, 38(3): 344-350 (in Chinese).
    [6]
    陈卓, 杨晓宁, 杨勇. GEO卫星空间自然强电磁环境与防护综述[J]. 环境技术, 2019, 37(2): 68-72. doi: 10.3969/j.issn.1004-7204.2019.02.019

    CHEN Z, YANG X N, YANG Y. Overview of GEO satellite under natural strong electromagnetic environment and protection methods[J]. Environmental Technology, 2019, 37(2): 68-72(in Chinese). doi: 10.3969/j.issn.1004-7204.2019.02.019
    [7]
    BENFORD J. Space applications of high power microwaves[C]// 2007 IEEE 34th International Conference on Plasma Science (ICOPS). Piscataway: IEEE Press, 2007: 257.
    [8]
    周传明, 刘国治, 刘永贵. 高功率微波源[M]. 北京: 原子能出版社, 2007.

    ZHOU C M, LIU G Z, LIU Y G. High power microwave source[M]. Beijing: Atomic Press, 2007 (in Chinese).
    [9]
    秋实. 高功率微波窗口击穿及馈源技术[D]. 西安: 西安电子科技大学, 2010.

    QIU S. Study of dielectric window breakdown and feed technqies for high power microwave systems[D]. Xi'an: Xidian University, 2010 (in Chinese).
    [10]
    CHANG C, LIU G Z, TANG C X, et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds[J]. Physics of Plasmas, 2011, 18(5): 055702. doi: 10.1063/1.3560599
    [11]
    QIU S, HAO X W, ZHANG G J, et al. Tree-like breakdown phenomena of dielectric window under X-band high power microwave in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 971-977. doi: 10.1109/TDEI.2010.5492274
    [12]
    程国新. 高功率微波输出窗真空表面闪络研究[D]. 长沙: 国防科学技术大学, 2013.

    CHENG G X. Study on the vacuum surface flashover of high-power microwave window[D]. Changsha: National University of Defense Technology, 2013 (in Chinese).
    [13]
    FOSTER J, BEESON S, THOMAS M, et al. Rapid formation of dielectric surface flashover due to pulsed high power microwave excitation[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 18(4): 964-970.
    [14]
    STEPHENS J, BEESON S, DICKENS J, et al. Charged electret deposition for the manipulation of high power microwave flashover delay times[J]. Physics of Plasmas, 2012, 19(11): 112111. doi: 10.1063/1.4767649
    [15]
    NEUBER A A, EDMISTON G F, KRILE J T, et al. Interface breakdown during high-power microwave transmission[J]. IEEE Transactions on Magnetics, 2007, 43(1 Pt. 2): 496-500.
    [16]
    ZHANG P, LAU Y Y, FRANZI M, et al. Multipactor susceptibility on a dielectric with a bias dc electric field and a background gas[J]. Physics of Plasmas, 2011, 18(5): 053508. doi: 10.1063/1.3592990
    [17]
    KIM H C, VERBONCOEUR J P. Time-dependent physics of a single-surface multipactor discharge[J]. Physics of Plasmas, 2005, 12(12): 123504. doi: 10.1063/1.2148963
    [18]
    KIM H C, VERBONCOEUR J P, LAU Y Y. Invited paper-modeling RF window breakdown: From vacuum multipactor to RF plasma[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 774-782.
    [19]
    蔡利兵, 王建国, 朱湘琴. 不同气压下介质表面高功率微波击穿的数值模拟[J]. 强激光与粒子束, 2010, 22(10): 2363-2368. doi: 10.3788/HPLPB20102210.2363

    CAI L B, WANG J G, ZHU X Q. Numerical simulation of high power microwave breakdown on dielectric surface at different gas pressures[J]. High Power Laser and Particle Beams, 2010, 22(10): 2363-2368(in Chinese). doi: 10.3788/HPLPB20102210.2363
    [20]
    蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究[J]. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217

    CAI L B, WANG J G. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave[J]. Acta Physica Sinica, 2011, 60(2): 025217(in Chinese). doi: 10.7498/aps.60.025217
    [21]
    WANG J G, CAI L B, ZHU X Q, et al. Numerical simulations of high power microwave dielectric interface breakdown involving outgassing[J]. Physics of Plasmas, 2010, 17(6): 063503. doi: 10.1063/1.3432715
    [22]
    董烨, 周前红, 董志伟, 等. 高功率微波沿面闪络击穿机制粒子模拟[J]. 强激光与粒子束, 2013, 25(4): 950-958. doi: 10.3788/HPLPB20132504.0950

    DONG Y, ZHOU Q H, DONG Z W, et al. PIC simulation of mechanism of high power microwave flashover and breakdown on dielectric surface[J]. High Power Laser and Particle Beams, 2013, 25(4): 950-958(in Chinese). doi: 10.3788/HPLPB20132504.0950
    [23]
    李定. 等离子体物理学[M]. 北京: 高等教育出版社, 2006.

    LI D. Plasma physics[M]. Beijing: Higher Education Press, 2006 (in Chinese).
    [24]
    VAUGHAN R M. Secondary emission formulas[J]. IEEE Transactions on Electron Devices, 1993, 40(4): 830.
    [25]
    张慧博, 杨建华, 程国新, 等. 刻槽结构高功率微波输出窗次级电子倍增效应[J]. 强激光与粒子束, 2013, 25(5): 1189-1194. doi: 10.3788/HPLPB20132505.1189

    ZHANG H B, YANG J H, CHENG G X, et al. Investigation on multipactor of high-power microwave window with grooves[J]. High Power Laser and Particle Beams, 2013, 25(5): 1189-1194(in Chinese). doi: 10.3788/HPLPB20132505.1189
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(174) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return