Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
HAN X,SUN Z F,GENG D X,et al. Experiment research on high-speed ultrasonic vibration milling of titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1707-1714 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0519
Citation: HAN X,SUN Z F,GENG D X,et al. Experiment research on high-speed ultrasonic vibration milling of titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1707-1714 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0519

Experiment research on high-speed ultrasonic vibration milling of titanium alloy

doi: 10.13700/j.bh.1001-5965.2021.0519
More Information
  • Corresponding author: E-mail:gengdx@ buaa.edu.cn
  • Received Date: 16 Sep 2021
  • Accepted Date: 05 Nov 2021
  • Publish Date: 18 Jan 2022
  • Conventional milling (CM) causes problems for titanium alloys, such as high cutting forces, large deformation of thin-walled workpieces, low processing efficiency, and severe tool wear due to low cutting speeds. To address these problems, a new method of high-speed ultrasonic vibration milling (HUVM) is adopted to machine titanium alloys. Their surface quality and the cutting force are also examined through experiments. The kinematic equation of HUVM is constructed. An HUVM experimental platform including ultrasonic vibration system, machining system and measurement system is built. Single factor experiments are carried out to explore the effects of CM and HUVM on the surface quality and cutting force. The experimental results show that compared with CM, HUVM could generate more uniform surface structure with increased surface roughness. Unlike CM with residual tensile stress of the machined surfaces, HUVM has residual compressive stress with its value decreasing with the increase of feed per tooth and cutting speed. Moreover, HUVM could reduce cutting force by 32.6%~35.3% compared to CM.

     

  • loading
  • [1]
    ZHANG M, ZHANG D, GUO H, et al. High-speed rotary ultrasonic elliptical milling of Ti-6Al-4V using high-pressure coolant[J]. Metals, 2020, 10(4): 500. doi: 10.3390/met10040500
    [2]
    LI A H, ZHAO J, LUO H B, et al. Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(5): 465-478.
    [3]
    WU Y, NIU J Z, FUJIMOTO M, et al. Fundamental machining characteristics of ultrasonic assisted turning of titanium alloy Ti-6Al-4V[J]. Advanced Materials Research, 2013, 797: 344-349. doi: 10.4028/www.scientific.net/AMR.797.344
    [4]
    路冬, 蔡力钢, 程强, 等. 钛合金超声椭圆振动辅助车削实验研究[J]. 振动与冲击, 2015, 34(6): 151-154. doi: 10.13465/j.cnki.jvs.2015.06.029

    LU D, CAI L G, CHENG Q, et al. Tests for ultrasonic elliptical vibration-assisted turning of titanium alloy[J]. Journal of Vibration and Shock, 2015, 34(6): 151-154(in Chinese). doi: 10.13465/j.cnki.jvs.2015.06.029
    [5]
    张明亮, 张德远, 刘佳佳, 等. 钛合金薄壁件高速超声椭圆振动铣削机理和试验[J]. 北京航空航天大学学报, 2019, 45(8): 1606-1612. doi: 10.13700/j.bh.1001-5965.2018.0712

    ZHANG M L, ZHANG D Y, LIU J J, et al. Mechanism and experiment of high-speed ultrasonic elliptical vibration milling of thin-walled titanium alloy parts[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1606-1612(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0712
    [6]
    王明海, 李世永, 郑耀辉. 超声铣削钛合金材料表面粗糙度研究[J]. 农业机械学报, 2014, 45(6): 341-346. doi: 10.6041/j.issn.1000-1298.2014.06.052

    WANG M H, LI S Y, ZHENG Y H. Surface roughness of titanium alloy under ultrasonic vibration milling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 341-346(in Chinese). doi: 10.6041/j.issn.1000-1298.2014.06.052
    [7]
    TAO G C, MA C, SHEN X H, et al. Experimental and modeling study on cutting forces of feed direction ultrasonic vibration-assisted milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1): 709-715.
    [8]
    CAKIR F H, GURGEN S, SOFUOGLU M A, et al. Finite element modeling of ultrasonic assisted turning of Ti6Al4V alloy[J]. Procedia - Social and Behavioral Sciences, 2015, 195: 2839-2848. doi: 10.1016/j.sbspro.2015.06.404
    [9]
    张翔宇, 隋翯, 张德远, 等. 高速超声振动切削钛合金可行性研究[J]. 机械工程学报, 2017, 53(19): 120-127. doi: 10.3901/JME.2017.19.120

    ZHANG X Y, SUI H, ZHANG D Y, et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Mechanical Engineering, 2017, 53(19): 120-127(in Chinese). doi: 10.3901/JME.2017.19.120
    [10]
    ZHENG K, LIAO W H, DONG Q, et al. Friction and wear on titanium alloy surface machined by ultrasonic vibration-assisted milling[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(9): 411. doi: 10.1007/s40430-018-1336-9
    [11]
    武民. 不同振动方式下的钛合金振动辅助铣削工艺效果研究[D]. 新乡: 河南科技学院, 2018.

    WU M. Study on the technological effect of vibration-assisted milling of titanium alloy under different vibration modes[D]. Xinxiang: Henan Institute of Science and Technology, 2018 (in Chinese).
    [12]
    李世永. 超声扭转振动辅助铣削钛合金的加工技术研究[D]. 沈阳: 沈阳航空航天大学, 2014.

    LI S Y. Research on machining technology of ultrasonic torsional vibration assisted milling of titanium alloy[D]. Shenyang: Shenyang Aerospace University, 2014 (in Chinese).
    [13]
    ZHU Z J, SUN J, LI J F, et al. Investigation on the influence of tool wear upon chip morphology in end milling titanium alloy Ti6Al4V[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9): 1477-1485.
    [14]
    LIU J J, JIANG X G, HAN X, et al. Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5): 1451-1465.
    [15]
    CHEN G, REN C Z, ZOU Y H, et al. Mechanism for material removal in ultrasonic vibration helical milling of Ti6Al4V alloy[J]. International Journal of Machine Tools and Manufacture, 2019, 138: 1-13. doi: 10.1016/j.ijmachtools.2018.11.001
    [16]
    于浩, 赵军, 盖少磊, 等. 42CrMo钢车削表面完整性研究[J]. 组合机床与自动化加工技术, 2021(7): 137-140. doi: 10.13462/j.cnki.mmtamt.2021.07.032

    YU H, ZHAO J, GAI S L, et al. Research on surface integrity in turning of 42CrMo steel[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(7): 137-140(in Chinese). doi: 10.13462/j.cnki.mmtamt.2021.07.032
    [17]
    陈建岭, 李剑峰, 孙杰, 等. 钛合金铣削加工表面残余应力研究[J]. 机械强度, 2010, 32(1): 53-57. doi: 10.16579/j.issn.1001.9669.2010.01.011

    CHEN J L, LI J F, SUN J, et al. Surface residual stress of titanium alloy induced by milling[J]. Journal of Mechanical Strength, 2010, 32(1): 53-57(in Chinese). doi: 10.16579/j.issn.1001.9669.2010.01.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(297) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return