Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
CHANG Z M,LI L Y. Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1802-1812 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0541
Citation: CHANG Z M,LI L Y. Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1802-1812 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0541

Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models

doi: 10.13700/j.bh.1001-5965.2021.0541
Funds:  National Natural Science Foundation of China (51875464)
More Information
  • Corresponding author: E-mail:luyili@nwpu.edu.cn
  • Received Date: 09 Sep 2021
  • Accepted Date: 10 Dec 2021
  • Publish Date: 18 Jan 2022
  • Structural systems with dynamic output performance has gained more and more attention in engineering practice. However, most existing surrogate models for estimating time-dependent reliability of such systems only consider the effect of the random variables which are acting on the system at the current moment, but ignores their effect with time-dependent accumulation. Therefore, these models cannot give an accurate prediction for time-dependent reliability of the dynamic systems. To solve this problem. this paper proposes a double-loop surrogate model method for time-dependent reliability analysis based on the nonlinear autoregressive with exogenous input (NARX) model and Kriging model. In the inner loop of the proposed method, NARX model is used to describe the variation of the output response with time under given random input variables, which can accurately simulate the dynamic behavior of the system. In the outer loop, the Kriging model of the extreme value of the dynamic systems is built based on the random input samples and the corresponding extreme values predicted by the inner NARX model. The reliability of the time-varying structure system then can be easily obtained based on the outer Kriging model. Finally, the effectiveness and accuracy of the proposed method for reliability analysis of dynamic structural systems with fluctuating outputs is verified by three examples.

     

  • loading
  • [1]
    黄贤振, 张义民, 吴茂昌, 等. 基于降维积分的结构系统可靠性分析研究[J]. 力学学报, 2013, 45(3): 456-460. doi: 10.6052/0459-1879-12-326

    HUANG X Z, ZHANG Y M, WU M C, et al. Research on the method for reliability analysis of structural systems based on the dimensional-reduction integration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 456-460(in Chinese). doi: 10.6052/0459-1879-12-326
    [2]
    杨绿峰, 吴文龙, 余波. 一种不依赖失效路径的结构体系可靠度分析方法[J]. 中国科学:物理学 力学 天文学, 2014, 44(11): 1220-1231.

    YANG L F, WU W L, YU B. A failure-path independent method for analysis of structural system reliability[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(11): 1220-1231(in Chinese).
    [3]
    亢战, 罗阳军. 基于凸模型的结构非概率可靠性优化[J]. 力学学报, 2006, 38(6): 807-815. doi: 10.3321/j.issn:0459-1879.2006.06.011

    KANG Z, LUO Y J. On structural optimization for non-probabilistic reliability based on convex models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 807-815(in Chinese). doi: 10.3321/j.issn:0459-1879.2006.06.011
    [4]
    祁武超,邱志平. 基于区间分析的结构非概率可靠性优化设计[J]. 中国科学: 物理学 力学 天文学, 2013, 43(1): 85-93.

    QI W C, QIU Z P. Non-probabilistic reliability-based structural design optimization based on the interval analysis method[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2013, 43(1): 85-93(in Chinese).
    [5]
    LIANG J H, MOURELATOS Z P, NIKOLAIDIS E. A single-loop approach for system reliability-based design optimization[J]. Journal of Mechanical Design, 2007, 129(12): 1215-1224. doi: 10.1115/1.2779884
    [6]
    DU X P, CHEN W. Sequential optimization and reliability assessment method for efficient probabilistic design[J]. Journal of Mechanical Design, 2004, 126(2): 225-233. doi: 10.1115/1.1649968
    [7]
    RICE S O. Mathematical analysis of random noise[J]. The Bell System Technical Journal, 1944, 23(3): 282-332. doi: 10.1002/j.1538-7305.1944.tb00874.x
    [8]
    CRANDALL S H, CHANDIRAMANI K L, COOK R G. Some first-passage problems in random vibration[J]. Journal of Applied Mechanics, 1966, 33(3): 532-538. doi: 10.1115/1.3625118
    [9]
    SUNDAR V S, MANOHAR C S. Time variant reliability model updating in instrumented dynamical systems based on Girsanov’s transformation[J]. International Journal of Non-Linear Mechanics, 2013, 52: 32-40. doi: 10.1016/j.ijnonlinmec.2013.02.002
    [10]
    BREITUNG K, RACKWITZ R. Nonlinear combination of load processes[J]. Journal of Structural Mechanics, 1982, 10(2): 145-166.
    [11]
    ZAYED A, GARBATOV Y, GUEDES SOARES C. Time variant reliability assessment of ship structures with fast integration techniques[J]. Probabilistic Engineering Mechanics, 2013, 32: 93-102. doi: 10.1016/j.probengmech.2013.01.002
    [12]
    ANDRIEU-RENAUD C, SUDRET B, LEMAIRE M. The PHI2 method: A way to compute time-variant reliability[J]. Reliability Engineering & System Safety, 2004, 84(1): 75-86.
    [13]
    张德权, 韩旭, 姜潮, 等. 时变可靠性的区间PHI2分析方法[J]. 中国科学:物理学 力学 天文学, 2015, 45(5): 41-53.

    ZHANG D Q, HAN X, JIANG C, et al. The interval PHI2 analysis method for time-dependent reliability[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2015, 45(5): 41-53(in Chinese).
    [14]
    HU Z, DU X P. A sampling approach to extreme value distribution for time-dependent reliability analysis[J]. Journal of Mechanical Design, 2013, 135(7): 071003. doi: 10.1115/1.4023925
    [15]
    LI J, CHEN J B, FAN W L. The equivalent extreme-value event and evaluation of the structural system reliability[J]. Structural Safety, 2007, 29(2): 112-131. doi: 10.1016/j.strusafe.2006.03.002
    [16]
    CHEN J B, LI J. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters[J]. Structural Safety, 2007, 29(2): 77-93. doi: 10.1016/j.strusafe.2006.02.002
    [17]
    DU X P. Time-dependent mechanism reliability analysis with envelope functions and first-order approximation[J]. Journal of Mechanical Design, 2014, 136(8): 081010. doi: 10.1115/1.4027636
    [18]
    石岩, 吕震宙, 周易成. 随时间和空间变化可靠性及可靠性全局灵敏度分析的包络函数法[J]. 西北工业大学学报, 2017, 35(4): 591-598. doi: 10.3969/j.issn.1000-2758.2017.04.006

    SHI Y, LU Z Z, ZHOU Y C. Temporal and spatial reliability and global sensitivity analysis with envelope functions[J]. Journal of Northwestern Polytechnical University, 2017, 35(4): 591-598(in Chinese). doi: 10.3969/j.issn.1000-2758.2017.04.006
    [19]
    CHENG K, LU Z Z. Time-variant reliability analysis based on high dimensional model representation[J]. Reliability Engineering & System Safety, 2019, 188: 310-319.
    [20]
    HAWCHAR L, EL SOUEIDY C P, SCHOEFS F. Principal component analysis and polynomial chaos expansion for time-variant reliability problems[J]. Reliability Engineering & System Safety, 2017, 167: 406-416.
    [21]
    HU Z, MAHADEVAN S, DU X P. Uncertainty quantification of time-dependent reliability analysis in the presence of parametric uncertainty[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering, 2016, 2(3): 031005. doi: 10.1115/1.4032307
    [22]
    WANG Z Q, WANG P F. A nested extreme response surface approach for time-dependent reliability-based design optimization[J]. Journal of Mechanical Design, 2012, 134(12): 121007. doi: 10.1115/1.4007931
    [23]
    HU Z, DU X P. Mixed efficient global optimization for time-dependent reliability analysis[J]. Journal of Mechanical Design, 2015, 137(5): 051401. doi: 10.1115/1.4029520
    [24]
    SPIRIDONAKOS M D, CHATZI E N. Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models[J]. Computers & Structures, 2015, 157: 99-113.
    [25]
    CHEN S, BILLINGS S A, LUO W. Orthogonal least squares methods and their application to non-linear system identification[J]. International Journal of Control, 1989, 50(5): 1873-1896. doi: 10.1080/00207178908953472
    [26]
    BILLINGS S A. Nonlinear system identification: NARMAX methods in the time, frequence and spatio-temporal domains[M]. New York: John Wiley & Sons, Inc., 2013.
    [27]
    CHEN Z H, NI Y Q. On-board identification and control performance verification of an MR damper incorporated with structure[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(14): 1551-1565. doi: 10.1177/1045389X11411212
    [28]
    WEI H L, BILLINGS S A. Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information[J]. International Journal of Model Identification and Control, 2008, 3(4): 341-356. doi: 10.1504/IJMIC.2008.020543
    [29]
    EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression[J]. The Annals of Statistics, 2004, 32(2): 407-499.
    [30]
    LV Z Y, LU Z Z, WANG P. A new learning function for Kriging and its applications to solve reliability problems in engineering[J]. Computers & Mathematics with Applications, 2015, 70(5): 1182-1197.
    [31]
    KLEINEN J P C. Kringing metamodeling in simulation: A review[J]. Eurpean Journal of Operational Research, 2009, 192(3): 707-716.
    [32]
    LOPHAVEN S N, NIELSEN H B, SONDERGAARD J. Aspects of the MATLAB toolbox DACE: IMM-REP-2002-13[R]. Kongens Lyngby: Technical University of Denmark, 2002.
    [33]
    ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145-154. doi: 10.1016/j.strusafe.2011.01.002
    [34]
    GHANEM R G, SPANOS P D. Stochastic finite elements: A spectral approach[M]. Berlin: Springer-Verlag, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views(343) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return