Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
HE L T,FANG H R,CHEN Y F,et al. Design and performance analysis of spatial large extension parallel mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1722-1734 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0548
Citation: HE L T,FANG H R,CHEN Y F,et al. Design and performance analysis of spatial large extension parallel mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1722-1734 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0548

Design and performance analysis of spatial large extension parallel mechanism

doi: 10.13700/j.bh.1001-5965.2021.0548
Funds:  Fundamental Research Funds for Central Universities (2018JBZ007)
More Information
  • Corresponding author: E-mail:hrfang@bjtu.edu.cn
  • Received Date: 13 Sep 2021
  • Accepted Date: 15 Oct 2021
  • Publish Date: 29 Oct 2021
  • In the process of large-scale workpiece machining, the insufficient extension space of the executive mechanism is an urgent problem to be solved in the aerospace manufacturing industry. To increase the working space at the end of the executive mechanism, and to provide the mechanism with a stable and reliable extension foundation, a parallel extendable mechanism with high stiffness and large extension is proposed. This paper focuses on the design and analysis of parallel extensible mechanisms. Based on graph theory, the configuration of the extendable mechanism was synthesized, and the three extendable branch unit configurations, PRRR, PRRR-3R and PRRR-6R (P represents prismatic pair, R represents rotation pair) were obtained by using the configuration evolution. On this basis, the extensibility and stiffness of the branch chain unit of the three extensible mechanisms were compared and analyzed. And finally, the PRRR branch chain unit that satisfies the requirements was configured as a parallel extensible mechanism. The parallel extendable mechanism can be applied to occasions that need to provide large extension and large stiffness and realize the expansion of the movement space of other actuators.

     

  • loading
  • [1]
    刘欣, 王国庆, 李曙光, 等. 重型运载火箭关键制造技术发展展望[J]. 航天制造技术, 2013(1): 1-6.

    LIU X, WANG G Q, LI S G, et al. Forecasts on crucial manufacturing technology development of heavy lift launch vehicle[J]. Aerospace Manufacturing Technology, 2013(1): 1-6(in Chinese).
    [2]
    周磊, 李新和, 俞大辉, 等. 球冠形薄壁封头在小减薄率工况下的失稳研究[J]. 锻压技术, 2016, 41(1): 25-31. doi: 10.13330/j.issn.1000-3940.2016.01.006

    ZHOU L, LI X H, YU D H, et al. Research on instabilities of thin-walled spherical head at low thinning rate[J]. Forging & Stamping Technology, 2016, 41(1): 25-31(in Chinese). doi: 10.13330/j.issn.1000-3940.2016.01.006
    [3]
    朱云平, 张帆. 贮箱绝热层打磨机器人系统设计[J]. 上海工程技术大学学报, 2017, 31(1): 1-4. doi: 10.3969/j.issn.1009-444X.2017.01.001

    ZHU Y P, ZHANG F. Design of grinding robot system for tank insulating layer[J]. Journal of Shanghai University of Engineering Science, 2017, 31(1): 1-4(in Chinese). doi: 10.3969/j.issn.1009-444X.2017.01.001
    [4]
    黄顺舟, 王力, 祁佩, 等. 低温贮箱隔热层打磨机器人的动力学仿真分析[J]. 环球市场信息导报, 2016, 37: 137-139.

    HUANG S Z, WANG L, QI P, et al. Dynamic simulation analysis of low temperature tank insulation polishing robot[J]. Global Market Information Guide, 2016, 37: 137-139(in Chinese).
    [5]
    党嘉强, 陶正瑞, 徐锦泱, 等. 聚氨酯泡沫绝热层高效精密打磨装置设计与建模[J]. 机床与液压, 2020, 48(2): 59-62. doi: 10.3969/j.issn.1001-3881.2020.02.013

    DANG J Q, TAO Z R, XU J Y, et al. Design and modeling of high-efficiency and high-precision grinding device for polyurethane foam insulations[J]. Machine Tool & Hydraulics, 2020, 48(2): 59-62(in Chinese). doi: 10.3969/j.issn.1001-3881.2020.02.013
    [6]
    陶波, 赵兴炜, 丁汉. 大型复杂构件机器人移动加工技术研究[J]. 中国科学(技术科学), 2018, 48(12): 1302-1312. doi: 10.1360/N092018-00192

    TAO B, ZHAO X W, DING H. Study on robotic mobile machining techniques for large complex components[J]. Scientia Sinica (Technologica), 2018, 48(12): 1302-1312(in Chinese). doi: 10.1360/N092018-00192
    [7]
    李冰岩, 刘荣强, 从强, 等. 基于豆荚杆的三棱柱式可展开薄膜支撑臂设计与优化[J]. 机械工程学报, 2020, 56(7): 35-43. doi: 10.3901/JME.2020.07.035

    LI B Y, LIU R Q, CONG Q, et al. Design and optimization of a tri-prism deployable membrane support arm using lenticular collapsible composite tubes[J]. Journal of Mechanical Engineering, 2020, 56(7): 35-43(in Chinese). doi: 10.3901/JME.2020.07.035
    [8]
    杨萍萍, 冯长凯. 可展开伸缩套管式伸展臂结构设计与分析[J]. 电子科技, 2008, 21(9): 8-11. doi: 10.3969/j.issn.1007-7820.2008.09.003

    YANG P P, FENG C K. The structural design and analysis of the deployable[J]. Electronic Science and Technology, 2008, 21(9): 8-11(in Chinese). doi: 10.3969/j.issn.1007-7820.2008.09.003
    [9]
    SHAN M H, GUO H W, LIU R Q, et al. Design and analysis of a triangular prism modular deployable mast[C]//2013 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2013: 1546-1551.
    [10]
    高明星, 刘荣强, 李冰岩, 等. 空间可展开三棱柱伸展臂设计与优化[J]. 机械工程学报, 2020, 56(15): 129-137. doi: 10.3901/JME.2020.15.129

    GAO M X, LIU R Q, LI B Y, et al. Design and optimization of space deployable tri-prism mast[J]. Journal of Mechanical Engineering, 2020, 56(15): 129-137(in Chinese). doi: 10.3901/JME.2020.15.129
    [11]
    马艳, 张群, 李锐明, 等. 可折展空间八转动副连杆捕获机构的设计[J]. 西安交通大学学报, 2020, 54(3): 179-187. doi: 10.7652/xjtuxb202003022

    MA Y, ZHANG Q, LI R M, et al. Design and analysis of foldable capture mechanism based on spatial 8-rotation linkages[J]. Journal of Xi’an Jiaotong University, 2020, 54(3): 179-187(in Chinese). doi: 10.7652/xjtuxb202003022
    [12]
    刘仁志, 宋志佳, 高文杰, 等. 正八面体空间伸展臂的八面体单元结构分析[J]. 机械设计, 2013, 30(6): 72-75. doi: 10.3969/j.issn.1001-2354.2013.06.018

    LIU R Z, SONG Z J, GAO W J, et al. Analysis of octahedron unit structure of regular octahedron space deployable arm[J]. Journal of Machine Design, 2013, 30(6): 72-75(in Chinese). doi: 10.3969/j.issn.1001-2354.2013.06.018
    [13]
    韩博, 许允斗, 姚建涛, 等. 双层环形桁架可展天线机构运动特性与动力学分析[J]. 兵工学报, 2020, 41(4): 810-821. doi: 10.3969/j.issn.1000-1093.2020.04.020

    HAN B, XU Y D, YAO J T, et al. Kinematic characteristics and dynamics analysis of a double-ring truss deployable antenna mechanism[J]. Acta Armamentarii, 2020, 41(4): 810-821(in Chinese). doi: 10.3969/j.issn.1000-1093.2020.04.020
    [14]
    ZHAO J S, CHU F L, FENG Z J. The mechanism theory and application of deployable structures based on SLE[J]. Mechanism and Machine Theory, 2009, 44(2): 324-335. doi: 10.1016/j.mechmachtheory.2008.03.014
    [15]
    史创, 郭宏伟, 刘荣强, 等. 双层环形可展开天线机构构型优选及结构设计[J]. 宇航学报, 2016, 37(7): 869-878.

    SHI C, GUO H W, LIU R Q, et al. Configuration optimization and structure design of the double-layer hoop deployable antenna mechanism[J]. Journal of Astronautics, 2016, 37(7): 869-878(in Chinese).
    [16]
    ZHAO T S, WANG C, LIU X, et al. Stiffness and singularity analysis of foldable parallel mechanism for ship-based stabilized platform[J]. Robotica, 2016, 34(4): 913-924. doi: 10.1017/S0263574714001969
    [17]
    房海蓉, 陈江红. 一种新型四自由度并联机构设计与分析[J]. 北京交通大学学报, 2011, 35(4): 134-137. doi: 10.3969/j.issn.1673-0291.2011.04.027

    FANG H R, CHEN J H. Structure synthesis and analysis of a novel four-degree-of-freedom parallel manipulator[J]. Journal of Beijing Jiaotong University, 2011, 35(4): 134-137(in Chinese). doi: 10.3969/j.issn.1673-0291.2011.04.027
    [18]
    LI D, GUO S, CHEN Y. Kinematic performance and task planning analysis of a parameter reconfigurable parallel mechanism[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE Press, 2019: 545-552.
    [19]
    邹琦, 曲海波, 郭盛. 一种三自由度可重构并联机构优化设计及性能分析[J]. 中国机械工程, 2018, 29(10): 1172-1178. doi: 10.3969/j.issn.1004-132X.2018.10.007

    ZOU Q, QU H B, GUO S. Optimal design and performance analysis of a 3-DOF reconfigurable parallel mechanism[J]. China Mechanical Engineering, 2018, 29(10): 1172-1178(in Chinese). doi: 10.3969/j.issn.1004-132X.2018.10.007
    [20]
    HUANG G Y, GUO S, ZHANG D, et al. Kinematic analysis and multi-objective optimization of a new reconfigurable parallel mechanism with high stiffness[J]. Robotica, 2018, 36(2): 187-203. doi: 10.1017/S0263574717000236
    [21]
    杨廷力. 机器人机构拓扑结构学[M]. 北京: 机械工业出版社, 2004.

    YANG T L. Topology structure design of robot mechanisms[M]. Beijing: China Mechine Press, 2004 (in Chinese).
    [22]
    丁华锋, 黄真. 基于环路特性的运动链拓扑图及特征描述的自动生成[J]. 机械工程学报, 2007, 43(11): 40-43. doi: 10.3321/j.issn:0577-6686.2007.11.006

    DING H F, HUANG Z. Automatic creation of topological graphs and the characteristic representations of kinematic chains based on the loop characteristics[J]. Chinese Journal of Mechanical Engineering, 2007, 43(11): 40-43(in Chinese). doi: 10.3321/j.issn:0577-6686.2007.11.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(12)

    Article Metrics

    Article views(203) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return