Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
ZHANG X W,ZHANG M,YU D Y,et al. Analysis of influence of ultrasonic drilling structure parameters on output characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1735-1742 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0554
Citation: ZHANG X W,ZHANG M,YU D Y,et al. Analysis of influence of ultrasonic drilling structure parameters on output characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1735-1742 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0554

Analysis of influence of ultrasonic drilling structure parameters on output characteristics

doi: 10.13700/j.bh.1001-5965.2021.0554
Funds:  National Natural Science Foundation of China (U1637208,U2013603)
More Information
  • Corresponding author: E-mail:yudyun@sina.com
  • Received Date: 15 Sep 2021
  • Accepted Date: 13 Dec 2021
  • Publish Date: 24 Feb 2022
  • The ultrasonic drill has the characteristics of lightweight, low power consumption, the small axial force required, easy real-time detection and in-situ analysis, and good adaptability to different objects. It is highly anticipated in exploring new scientific drilling technologies and new methods suitable for deep space exploration. In order to improve the adaptability of the drill to different drilling objects and its design efficiency further, the influence of the structural parameters of the ultrasonic driller is studied. The frequency is mainly considered to be affected by the number of collisions, the vibration of the spring and drilling rod, and the vibration of the drilling rod itself. On this basis, a physical model of the influencing factors was established. Experiments are used to examine how the spring stiffness, initial preload, and mass of the free masses affect the output frequency, displacement, and speed. The effect that the initial preloads of the spring have on the frequency is more significant, followed by spring stiffness and mass of the free masses. Finally, a technical reference for the optimization design of variable frequency ultrasonic drills suitable for high-efficiency drilling of objects with different hardness is provided.

     

  • loading
  • [1]
    于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(2): 108-113. doi: 10.15982/j.issn.2095-7777.2016.02.002

    YU D Y, SUN Z Z, MENG L Z, et al. The development process and prospects for Mars exploration[J]. Journal of Deep Space Exploration, 2016, 3(2): 108-113(in Chinese). doi: 10.15982/j.issn.2095-7777.2016.02.002
    [2]
    于登云, 张兴旺, 张明, 等. 小天体采样探测技术发展现状及展望[J]. 航天器工程, 2020, 29(2): 1-10. doi: 10.3969/j.issn.1673-8748.2020.02.001

    YU D Y, ZHANG X W, ZHANG M, et al. Development status and prospect of small celestial body sampling exploration techniques[J]. Spacecraft Engineering, 2020, 29(2): 1-10(in Chinese). doi: 10.3969/j.issn.1673-8748.2020.02.001
    [3]
    吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1): 5-17. doi: 10.15982/j.issn.2095-7777.2014.01.003

    WU W R, YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17(in Chinese). doi: 10.15982/j.issn.2095-7777.2014.01.003
    [4]
    刘志全, 庞彧, 李新立. 深空探测自动采样机构的特点及应用[J]. 航天器工程, 2011, 20(3): 120-125. doi: 10.3969/j.issn.1673-8748.2011.03.019

    LIU Z Q, PANG Y, LI X L. Characteristics and applications of automatic sampling mechanisms for deep space exploration[J]. Spacecraft Engineering, 2011, 20(3): 120-125(in Chinese). doi: 10.3969/j.issn.1673-8748.2011.03.019
    [5]
    FRANCA L F R. A bit–rock interaction model for rotary–percussive drilling[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(5): 827-835.
    [6]
    TALALAY P G. Subglacial till and bedrock drilling[J]. Cold Regions Science and Technology, 2013, 86: 142-166. doi: 10.1016/j.coldregions.2012.08.009
    [7]
    WANG J S, CAO P L, LIU C P, et al. Comparison and analysis of subglacial bedrock core drilling technology in Polar Regions[J]. Polar Science, 2015, 9(2): 208-220. doi: 10.1016/j.polar.2015.03.003
    [8]
    BAR-COHEN Y, SHERRIT S, DOLGIN B P, et al. Ultrasonic/sonic drilling/coring (USDC) for planetary applications[C]//Proceedings of the SPIE—The International Society for Optical Engineering. Newport Beach: SPIE, 2001: 441-448.
    [9]
    BAR-COHEN Y, SHERRIT S, DOLGIN B P, et al. Ultrasonic/sonic driller/corer (USDC) as a sampler for planetary exploration[C]//2001 IEEE, IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2001: 263-271.
    [10]
    BAO X Q, BAR-COHEN Y, CHANG Z, et al. Modeling and computer simulation of ultrasonic/sonic driller/corer (USDC)[J]. IEEE Transactions of Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(9): 1147-1160. doi: 10.1109/TUFFC.2003.1235326
    [11]
    BAO X Q, BAR-COHEN Y, CHANG Z, et al. Ultrasonic/sonic impacting penetrators[J]. NASA Tech Briefs, 2008, 32(4): 58-60.
    [12]
    BAR-COHEN Y, SHERRIT S. Self mountable and extractable ultrasonic/sonic anchor: America, US7156189[P]. 2007-01-02.
    [13]
    SHERRIT S, BADESCU M, BAO X Q, et al. Novel horn designs for power ultrasonics[C]//IEEE Ultrasonics Symposium. Piscataway: IEEE Press, 2004: 2263-2266.
    [14]
    ZENSHEU C, STEWART S, MIRCEA B, et al. Design and analysis of ultrasonic actuator in consideration of length-reduction for a USDC (ultrasonic/sonic driller/corer)[C]//Proceedings of the SPIE Smart Structures Conference. Newport Beach: SPIE, 2005, 5762: 72-79.
    [15]
    郭俊杰, 黄卫清, 李志荣. 一种新型的超声波/声波钻探器[J]. 压电与声光, 2008, 30(5): 579-581. doi: 10.3969/j.issn.1004-2474.2008.05.019

    GUO J J, HUANG W Q, LI Z R. A new ultrasonic/sonic drilling device[J]. Piezoelectrics&Acoustooptics, 2008, 30(5): 579-581(in Chinese). doi: 10.3969/j.issn.1004-2474.2008.05.019
    [16]
    陈超, 黄卫清, 郭俊杰, 等. 深空探测用超声波/声波钻探采样器的研究[C]//第三届全国压电和声波理论及器件技术研讨会论文集, 南京: [出版者不详], 2008: 338-341.

    CHEN C, HUANG W Q, GUO J J, et al. Study on ultrasonic/sonic driller/corer for deep space exploration[C]//Proceedings of 3th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications. Nanjing: [s.n.], 2008: 338-341(in Chinese).
    [17]
    陈超, 杨康. 超声波/声波钻探器的设计与试验[J]. 振动、测试与诊断, 2013, 33(2): 252-257. doi: 10.3969/j.issn.1004-6801.2013.02.014

    CHEN C, YANG K. Design and text of ultrasonic/sonic drilling rig[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(2): 252-257(in Chinese). doi: 10.3969/j.issn.1004-6801.2013.02.014
    [18]
    毕亚兰. 新型超声钻的动力特性研究[D]. 太原: 太原理工大学, 2016.

    BI Y L. Study on dynamic characteristics of a new ultrasonic drill[D]. Taiyuan: Taiyuan University of Technology, 2016(in Chinese).
    [19]
    李贺, 全齐全, 王鑫剑, 等. 一种基于压电驱动的火星岩石钻探器的研制[J]. 深空探测学报, 2016, 3(2): 156-161. doi: 10.15982/j.issn.2095-7777.2016.02.010

    LI H, QUAN Q Q, WANG X J, et al. Development of a piezoelectric-driven rock drilling device on Mars[J]. Journal of Deep Space Exploration, 2016, 3(2): 156-161(in Chinese). doi: 10.15982/j.issn.2095-7777.2016.02.010
    [20]
    BAI D E, QUAN Q Q, WANG Y C, et al. A longitudinal & longitudinal-torsional vibration actuator for rotary-percussive ultrasonic planetary drills[J]. Advances in Space Research, 2018, 63(2): 1065-1072.
    [21]
    WANG Y C, QUAN Q Q, YU H G, et al. Rotary-percussive ultrasonic drill: An effective subsurface penetrating tool for minor planet exploration[J]. IEEE Access, 2018, 6: 37796-37806. doi: 10.1109/ACCESS.2018.2853166
    [22]
    王印超, 全齐全, 于红英, 等. 一种单压电叠堆驱动的回转冲击超声波钻[J]. 北京航空航天大学学报, 2018, 44(9): 1850-1859. doi: 10.13700/j.bh.1001-5965.2017.0699

    WANG Y C, QUAN Q Q, YU H Y, et al. A rotary-percussive ultrasonic drill driven by single piezoelectric stack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1850-1859(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0699
    [23]
    王童照, 全齐全, 黄江川, 等. 地外天体超声波钻探器研究与应用综述[J]. 宇航学报, 2021, 42(4): 397-408. doi: 10.3873/j.issn.1000-1328.2021.04.001

    WANG T Z, QUAN Q Q, HUANG J C, et al. Overview of research and application of ultrasonic drills for extraterrestrial objects[J]. Journal of Astronautics, 2021, 42(4): 397-408(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.04.001
    [24]
    VILA L, MALLA R B. Analytical model of the contact interaction between the components of a special percussive mechanism for planetary exploration[J]. Acta Astronautica, 2016, 118: 158-167. doi: 10.1016/j.actaastro.2015.09.016
    [25]
    VILA L, MALLA R B. Dynamic and contact analysis of a special percussive mechanism for planetary subsurface exploration[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
    [26]
    VILA L, MALLA R B. Analysis of the hammering mechanism of a special percussive system for planetary exploration[C]//55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(160) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return