Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
ZHONG J C,XU H J,WEI X L,et al. Detection of debonding defect in CFRP laminates using infrared pulse thermal wave tomography[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1847-1856 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0555
Citation: ZHONG J C,XU H J,WEI X L,et al. Detection of debonding defect in CFRP laminates using infrared pulse thermal wave tomography[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1847-1856 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0555

Detection of debonding defect in CFRP laminates using infrared pulse thermal wave tomography

doi: 10.13700/j.bh.1001-5965.2021.0555
More Information
  • Corresponding author: E-mail:wei18892022001@163.com
  • Received Date: 16 Sep 2021
  • Accepted Date: 05 Jan 2022
  • Publish Date: 21 Jan 2022
  • To achieve the three-dimensional tomography for detecting debonding defects of carbon fiber reinforced plastic (CFRP) laminates based on infrared pulse thermal wave imaging, consummate the out-field quantitative detection guarantee system, and improve the safety and reliability of laminates in service, research on infrared pulse thermal wave tomography method and detection technology is carried out. A specimen with artificial debonding defects was prepared, infrared pulse thermal wave imaging technology is employed to detect debonding defects. The transient response process of surface thermal signal in debonding and sound region and detection ability of infrared pulse thermal wave imaging are analyzed. Through reconstructed thermal signal difference between debonding and sound region based on logarithmic polynomial fitting, extreme time of thermal signal are calculated, and the change law of debonding region extreme time and defect state are analyzed;. Kernel fuzzy C-means clustering is used to classify extreme time array corresponding to the same defect depth, and the array average value is calculated as defect extreme time. Statistical relationship between the time and debonding region extreme time array is established to construct tomographic images sequence, and the corresponding defect depth is calculated. Three-dimensional visualization of debonding defects in laminate is achieved by isosurface drawing method. Research shows that infrared pulse thermal wave tomography can detect debonding defects of CFRP laminate. This method can accurately and reliably display distribution and morphology of internal defects in laminate. Maximum relative deviation between detected and actual defect depth is less than 15%, which has certain guiding significance for engineering application.

     

  • loading
  • [1]
    尚金龙, 李思海, 陈贻明. 纤维增强塑料在航空航天领域中的应用[J]. 塑料工业, 2019, 47(1): 148-151. doi: 10.3969/j.issn.1005-5770.2019.01.032

    SHANG J L, LI S H, CHEN Y M. Application of fiber reinforced plastic in aerospace field[J]. China Plastics Industry, 2019, 47(1): 148-151(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.01.032
    [2]
    薄纯强. 碳纤维机翼缺陷的锁相红外无损检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 1.

    BO C Q. Non-destructive testing research of CFRP airfoil defects based on lock-in infrared thermography[D]. Harbin: Harbin Institute of Technology, 2019: 1(in Chinese).
    [3]
    梁涛. 复合材料脱粘缺陷红外热成像无损检测定量分析研究[D]. 成都: 电子科技大学, 2017: 1.

    LIANG T. Quantitative analysis of infrared thermal imaging nondestructive testing for debonding defects of composite materials[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 1(in Chinese).
    [4]
    李晓霞, 伍耐明, 段玉霞, 等. 碳纤维层合板低速冲击后的红外热波检测分析[J]. 复合材料学报, 2010, 27(6): 88-93. doi: 10.13801/j.cnki.fhclxb.2010.06.022

    LI X X, WU N M, DUAN Y X, et al. Infrared thermal wave imaging for carbon fiber laminated boards after low velocity impact[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 88-93(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.06.022
    [5]
    PENG W, WANG F, MENG X L, et al. Dynamic thermal tomography based on continuous wavelet transform for debonding detection of the high silicon oxygen phenolic resin cladding layer[J]. Infrared Physics & Technology, 2018, 92(5): 115-121.
    [6]
    赵洪宝, 马丹, 马超群, 等. 航空用碳纤维复合材料典型缺陷无损检测技术研究[J]. 电子制作, 2020(24): 35-37. doi: 10.3969/j.issn.1006-5059.2020.24.014

    ZHAO H B, MA D, MA C Q, et al. Study on nondestructive testing technology of typical defects of aviation carbon fiber composites for aviation[J]. Practical Electronics, 2020(24): 35-37(in Chinese). doi: 10.3969/j.issn.1006-5059.2020.24.014
    [7]
    南方, 肖鹏. 复合材料结构表面状态的红外热成像检测影响研究[J]. 航空制造技术, 2019, 62(14): 83-87. doi: 10.16080/j.issn1671-833x.2019.14.083

    NAN F, XIAO P. Research of composites surface influence on thermography detection technology[J]. Aeronautical Manufacturing Technology, 2019, 62(14): 83-87(in Chinese). doi: 10.16080/j.issn1671-833x.2019.14.083
    [8]
    王扬, 李科, 刘俊岩. CFRP复合材料层板缺陷的红外热波成像检测方法[J]. 航空制造技术, 2016, 59(4): 36-42. doi: 10.16080/j.issn1671-833x.2016.04.036

    WANG Y, LI K, LIU J Y. Nondestructive testing and evaluation (NDT&E) for CFRP laminate with subsurface defects using infrared thermal wave imaging[J]. Aeronautical Manufacturing Technology, 2016, 59(4): 36-42(in Chinese). doi: 10.16080/j.issn1671-833x.2016.04.036
    [9]
    张金玉, 杨正伟, 田干, 等. 红外热波检测及其图像序列处理技术[M]. 北京: 国防工业出版社, 2015: 16-17.

    ZHANG J Y, YANG Z W, TIAN G, et al. Infrared thermal wave testing and images sequence processing technology[M]. Beijing: National Defense Industry Press, 2015: 16-17(in Chinese).
    [10]
    姜千辉, 姜长胜, 葛庆平, 等. 红外热波序列图像的图像分割与三维显示[J]. 无损检测, 2008, 30(2): 100-103. doi: 10.3969/j.issn.1000-6656.2008.02.010

    JIANG Q H, JIANG C S, GE Q P, et al. Segmentation and 3D display of infrared thermal image[J]. Nondestructive Testing, 2008, 30(2): 100-103(in Chinese). doi: 10.3969/j.issn.1000-6656.2008.02.010
    [11]
    TOIVANEN J M, TARVAINEN T, HUTTUNEN J M J, et al. Thermal tomography utilizing truncated Fourier series approximation of the heat diffusion equation[J]. International Journal of Heat and Mass Transfer, 2017, 108: 860-867. doi: 10.1016/j.ijheatmasstransfer.2016.12.060
    [12]
    TAVAKOLIAN P, SIVAGURUNATHAN K, MANDELIS A. Enhanced truncated-correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions[J]. Journal of Applied Physics, 2017, 122(2): 023103. doi: 10.1063/1.4992807
    [13]
    MELNYK S I, MELNYK S S, TULUZOV I G. Method of projection dynamic thermal tomography (PDTT)[C]//International Conference on Quantitative Infrared Thermography. [S.1.]:[s.n.], 2012: 1-6.
    [14]
    ELHASSNAOUI A, SAHNOUN S. A three-dimensional reconstruction algorithm for pulsed thermography[J]. Journal of Materials and Environmental Science, 2014, 5(4): 983-988.
    [15]
    VAVILOV V P, NESTERUK D A, SHIRYAEV V V, et al. Thermal (infrared) tomography: Terminology, principal procedures, and application to nondestructive testing of composite materials[J]. Russian Journal of Nondestructive Testing, 2010, 46(3): 151-161. doi: 10.1134/S1061830910030010
    [16]
    彭伟. 药柱包覆层缺陷红外脉冲成像及动态层析检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 79-80.

    PENG W. Study on infrared pulse imaging and dynamic chromatography detection technology for coating defects of grain[D]. Harbin: Harbin Institute of Technology, 2020: 79-80(in Chinese).
    [17]
    VAVILOV V, MALDAGUE X, DUFORT B, et al. Thermal nondestructive testing of carbon epoxy composites: Detailed analysis and data processing[J]. NDT & E International, 1993, 26(2): 85-95.
    [18]
    VAVILOV V. Dynamic thermal tomography: Recent improvements and applications[J]. NDT & E International, 2015, 71: 23-32.
    [19]
    PAWAR S S, VAVILOV V P. Applying the heat conduction-based 3D normalization and thermal tomography to pulsed infrared thermography for defect characterization in composite materials[J]. International Journal of Heat and Mass Transfer, 2016, 94: 56-65. doi: 10.1016/j.ijheatmasstransfer.2015.11.018
    [20]
    PENG W, WANG F, LIU J Y, et al. Pulse phase dynamic thermal tomography investigation on the defects of the solid-propellant missile engine cladding layer[J]. International Journal of Thermophysics, 2018, 39(4): 48-59. doi: 10.1007/s10765-018-2366-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views(164) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return