Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
WEI R K,DAI Y T,YANG C,et al. Numerical study of wing gust response alleviation based on camber morphing trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1864-1874 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0563
Citation: WEI R K,DAI Y T,YANG C,et al. Numerical study of wing gust response alleviation based on camber morphing trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1864-1874 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0563

Numerical study of wing gust response alleviation based on camber morphing trailing edge

doi: 10.13700/j.bh.1001-5965.2021.0563
Funds:  National Natural Science Foundation of China (11672018)
More Information
  • Corresponding author: E-mail:yutingdai@buaa.edu.cn
  • Received Date: 22 Sep 2021
  • Accepted Date: 26 Nov 2021
  • Publish Date: 27 Jan 2022
  • A mathematical model for gust response analysis is established for a wing with camber morphing trailing edges, and a simulation study of gust response alleviation is carried out. The computational fluid dynamics method is used to calculate the generalized unsteady aerodynamic force under the given dynamic morphing of the trailing edge, and the generalized aerodynamic force model under the dynamic deflection of the trailing edge is established based on the state observer method,. The panel method is used to calculate the generalized aerodynamic force caused by mode motion and gust, while the generalized predictive control (GPC) method is used in the design of gust alleviation control law. On this basis, the aerodynamic characteristics of the camber morphing trailing edge and the traditional hinged flap are compared. The simulation results show that the GPC method based on the camber morphing trailing edge can effectively alleviate the wing-tip acceleration response caused by gust, and the wing-tip acceleration reduction efficiency is 44.25%. The wing with morphing trailing edge has a more continuous pressure distribution on the upper and lower surfaces, a greater impact on the aerodynamics, and higher acceleration reduction efficiency. The use of camber morphing trailing edges for gust alleviation has a broader application prospect.

     

  • loading
  • [1]
    RIVERO A E, FOURNIER S, MANOLESOS M, et al. Experimental aerodynamic comparison of active camber morphing and trailing-edge flaps[J]. AIAA Journal, 2021, 59(7): 2627-2640.
    [2]
    祝连庆, 孙广开, 李红, 等. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14): 28-42.

    ZHU L Q, SUN G K, LI H, et al. Intelligent and flexible morphing wing technology: A review[J]. Journal of Mechanical Engineering, 2018, 54(14): 28-42(in Chinese).
    [3]
    HUNTLEY S J, WOODS B K, ALLEN C B. Computational analysis of the aerodynamics of camber morphing: AIAA 2019-2914[R]. Reston: AIAA, 2019.
    [4]
    NGUYEN N T, CRAMER N B, HASHEMI K E, et al. Progress on gust load alleviation wind tunnel experiment and aeroservoelastic model validation for a flexible wing with variable camber continuous trailing edge flap system: AIAA 2020-0214[R]. Reston: AIAA, 2020.
    [5]
    TAL E A, NGUYEN N T. Unsteady aeroservoelastic modeling of flexible wing generic transport aircraft with variable camber continuous trailing edge flap: AIAA 2015-2722[R]. Reston: AIAA, 2015.
    [6]
    NGUYEN N, TING E, LEBOFSKY S. Aeroelastic analysis of a flexible wing wind tunnel model with variable camber continuous trailing edge flap design[C]//AIAA Science and Technology Forum and Exposition. Reston: AIAA, 2015: 1405.
    [7]
    TING E, CHAPARRO D, NGUYEN N, et al. Optimization of variable-camber continuous trailing-edge flap configuration for drag reduction[J]. Journal of Aircraft, 2018, 55(6): 2217-2239. doi: 10.2514/1.C034810
    [8]
    HERRERA C Y, SPIVEY N D, LUNG S, et al. Aeroelastic airworthiness assessment of the adaptive compliant trailing edge flaps[C]//Proceedings of the 46th Society of Flight Test Engineers International Symposium, 2015: 14-17.
    [9]
    KOTA S, FLICK P, COLLIER F S. Flight testing of FlexFloilTM adaptive compliant trailing edge[C]//54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 0036.
    [10]
    陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报, 2009, 30(12): 2250-2256. doi: 10.3321/j.issn:1000-6893.2009.12.002

    CHEN L, WU Z G, YANG C, et al. Active control and wind tunnel test verification of multi-control surfaces wing for gust alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250-2256(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.12.002
    [11]
    DHILEEP K, KUMAR D, GHOSH S, et al. Numerical study of camber morphing in NACA0012 airfoil: AIAA 2020-2781[R]. Reston: AIAA, 2020.
    [12]
    ULLAH J, LUTZ T, KLUG L, et al. Active gust load alleviation by combined actuation of trailing edge and leading edge flap at transonic speeds: AIAA 2021-1831[R]. Reston: AIAA, 2021.
    [13]
    顾宁, 陆志良, 郭同庆, 等. 阵风响应及减缓的非定常数值模拟[J]. 航空计算技术, 2012, 42(3): 49-53. doi: 10.3969/j.issn.1671-654X.2012.03.013

    GU N, LU Z L, GUO T Q, et al. Gust response and alleviation analysis of airfoil[J]. Aeronautical Computing Technique, 2012, 42(3): 49-53(in Chinese). doi: 10.3969/j.issn.1671-654X.2012.03.013
    [14]
    许晓平, 祝小平, 周洲, 等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6): 818-823. doi: 10.3969/j.issn.1000-2758.2010.06.003

    XU X P, ZHU X P, ZHOU Z, et al. Further exploring CFD-based gust response and gust alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6): 818-823(in Chinese). doi: 10.3969/j.issn.1000-2758.2010.06.003
    [15]
    ZAIDE A, RAVEH D. Numerical simulation and reduced-order modeling of airfoil gust response[J]. AIAA Journal, 2006, 44(8): 1826-1834. doi: 10.2514/1.16995
    [16]
    张伟伟, 叶正寅, 杨青, 等. 基于ROM技术的阵风响应分析方法[J]. 力学学报, 2008, 40(5): 593-598. doi: 10.3321/j.issn:0459-1879.2008.05.003

    ZHANG W W, YE Z Y, YANG Q, et al. Gust response analysis using CFD-based reduced order models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 593-598(in Chinese). doi: 10.3321/j.issn:0459-1879.2008.05.003
    [17]
    杨国伟, 王济康. CFD结合降阶模型预测阵风响应[J]. 力学学报, 2008, 40(2): 145-153. doi: 10.3321/j.issn:0459-1879.2008.02.001

    YANG G W, WANG J K. Gust response prediction with CFD-based reduced order modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 145-153(in Chinese). doi: 10.3321/j.issn:0459-1879.2008.02.001
    [18]
    聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4): 1103-1111.

    NIE X Y, YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1103-1111(in Chinese).
    [19]
    杨阳, 杨超, 吴志刚, 等. 考虑舵机时滞的阵风减缓主动控制律设计[J]. 北京航空航天大学学报, 2020, 46(12): 2236-2244. doi: 10.13700/j.bh.1001-5965.2019.0635

    YANG Y, YANG C, WU Z G, et al. Design of gust alleviation active control law considering the time-delay of servo actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2236-2244(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0635
    [20]
    DAI Y T, YANG C. GPC-based gust response alleviation for aircraft model adapting to various flow velocities in the wind tunnel[J]. Shock and Vibration, 2015, 2015: 348971.
    [21]
    MOULIN B, KARPEL M. Gust loads alleviation using special control surfaces[J]. Journal of Aircraft, 2007, 44(1): 17-25. doi: 10.2514/1.19876
    [22]
    刘晓燕. 基于非定常气动力降阶模型的气动弹性研究[D]. 北京: 北京航空航天大学, 2011: 25-33.

    Liu X Y. Aeroelastic rearch based on unsteady aerodynamic reduced order model[D]. Beijing: Beihang University, 2011:25-33(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(288) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return