Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
XU M R,ZENG B Y,XIONG X,et al. Tensile fatigue properties of carbon fiber laminates in hygrothermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1614-1622 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0565
Citation: XU M R,ZENG B Y,XIONG X,et al. Tensile fatigue properties of carbon fiber laminates in hygrothermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1614-1622 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0565

Tensile fatigue properties of carbon fiber laminates in hygrothermal environments

doi: 10.13700/j.bh.1001-5965.2021.0565
More Information
  • Corresponding author: E-mail:xiaoquan_cheng@buaa.edu.cn
  • Received Date: 23 Sep 2021
  • Accepted Date: 26 Nov 2021
  • Publish Date: 15 Dec 2021
  • The hygrothermal environment is one of the main factors affecting the mechanical properties of composite laminates. To maintain the safety of the flight structures, it is crucial to study how hygrothermal conditions affect composite structures.The tensile fatigue properties of carbon fiber composite laminates (CFRP) in room temperature and dry (RTD) condition, cool temperature and dry (CTD) condition and elevated temperature and wet (ETW) condition were experimentally studied, then the S-N curves and fatigue damage modes of CFRP laminates in three different environments were obtained. This served as the foundation for the development of the laminate finite element analysis model, the study of laminate fatigue performance, the analysis and discussion of the effects of temperature and humidity on laminate fatigue performance, and the development of a method for determining the environmental factors influencing the fatigue life of laminates. The results show that the tensile fatigue properties of orthometric laminates are greatly affected by the environment of ETW condition. Compared with the RTD condition, the fatigue strength of orthometric laminates decreases by 2.76% in CTD condition when the fatigue life equates to 106, while the fatigue strength of orthometric laminates decreases by 23.77% ETW condition. The damage modes in RTD condition and in ETW condition are mainly fiber fracture and delamination, while the damage mode in CTD condition is almost fiber fracture. The S-N curve includes two stages of rapid and slow reduction for fatigue strength. The influence of temperature on fatigue performance is obviously stronger than that of humidity. When the temperature exceeds 45 ℃, the influence of humidity on fatigue performance enters the strong influence zone.

     

  • loading
  • [1]
    陈浩然, 息志臣, 贺晓东. 复合材料层合板的热变形非线性分析[J]. 大连理工大学学报, 1994, 34(3): 280-286.

    CHEN H R, XI Z C D, HE X D. Nonlinear analysis of thermal deformations of composite laminates under transient thermal loading[J]. Journal of Dalian University of Technology, 1994, 34(3): 280-286 (in Chinese).
    [2]
    LIU S F, CHENG X Q, ZHANG Q, et al. An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates[J]. Composites Part B:Engineering, 2016, 91: 431-440. doi: 10.1016/j.compositesb.2016.01.051
    [3]
    SETHI S, RAY B C. Environmental effects on fibre reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability[J]. Advances in Colloid and Interface Science, 2015, 217: 43-67. doi: 10.1016/j.cis.2014.12.005
    [4]
    ZHANG Q, CHENG X Q, ZHANG J, et al. Experimental and numerical investigation of composite box joint under tensile load[J]. Composites Part B:Engineering, 2016, 107: 75-83. doi: 10.1016/j.compositesb.2016.09.056
    [5]
    沙勐, 熊欣, 许名瑞, 等. 湿热环境对复合材料疲劳性能的影响[J]. 高科技纤维与应用, 2017, 42(4): 37-43. doi: 10.3969/j.issn.1007-9815.2017.04.007

    SHA M, XIONG X, XU M R, et al. Effect of hygrothermal environment on fatigue properties of composite materials[J]. Hi-Tech Fiber and Application, 2017, 42(4): 37-43(in Chinese). doi: 10.3969/j.issn.1007-9815.2017.04.007
    [6]
    MEZIERE Y, BUNSELL A R, FAVRY Y, et al. Large strain cyclic fatigue testing of unidirectional carbon fibre reinforced epoxy resin[J]. Composites Part A:Applied Science and Manufacturing, 2005, 36(12): 1627-1636. doi: 10.1016/j.compositesa.2005.03.020
    [7]
    COSTA M L, REZENDE M C, DE ALMEIDA S F M. Strength of hygrothermally conditioned polymer composites with voids[J]. Journal of Composite Materials, 2005, 39(21): 1943-1961. doi: 10.1177/0021998305051807
    [8]
    SHEN C H, SPRINGER G S. Effects of moisture and temperature on the tensile strength of composite materials[J]. Journal of Composite Materials, 1977, 11(1): 2-16. doi: 10.1177/002199837701100102
    [9]
    李嘉禄, 杨红娜, 寇长河. 三维编织复合材料的疲劳性能[J]. 复合材料学报, 2005, 22(4): 172-176. doi: 10.3321/j.issn:1000-3851.2005.04.029

    LI J L, YANG H N, KOU C H. Fatigue properties of three dimensional braiding composites[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 172-176(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.04.029
    [10]
    马丽婷, 陈新文, 邓立伟, 等. 复合材料疲劳性能研究[J]. 航空制造技术, 2013, 53(23): 73-74. doi: 10.3969/j.issn.1671-833X.2013.23.010

    MA L T, CHEN X W, DENG L W, et al. Fatigue performance of composites[J]. Aeronautical Manufacturing Technology, 2013, 53(23): 73-74(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.23.010
    [11]
    KAWAI M, YAJIMA S, HACHINOHE A, et al. High-temperature off-axis fatigue behaviour of unidirectional carbon-fibre-reinforced composites with different resin matrices[J]. Composites Science and Technology, 2001, 61(9): 1285-1302. doi: 10.1016/S0266-3538(01)00027-6
    [12]
    TURON A, COSTA J, CAMANHO P P, et al. Simulation of delamination in composites under high-cycle fatigue[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(11): 2270-2282. doi: 10.1016/j.compositesa.2006.11.009
    [13]
    MUSTAFA G, CRAWFORD C, SULEMAN A. Fatigue life prediction of laminated composites using a multi-scale M-LaF and Bayesian inference[J]. Composite Structures, 2016, 151: 149-161. doi: 10.1016/j.compstruct.2016.02.024
    [14]
    张文姣. 纤维增强复合材料的疲劳损伤模型及分析方法[D]. 哈尔滨: 哈尔滨工业大学, 2015 : 79-90.

    ZHANG W J. Fatigue damage model and analysis method of fiber reinforced composites[D]. Harbin: Harbin Institute of Technology, 2015: 79-90 (in Chinese).
    [15]
    张祥林, 孟庆春, 许名瑞, 等. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8): 169-177. doi: 10.11868/j.issn.1001-4381.2020.000662

    ZHANG X L, MENG Q C, XU M R, et al. Tensile fatigue properties of carbon fiber reinforced composite orthogonal laminates after moisture absorption[J]. Journal of Materials Engineering, 2021, 49(8): 169-177(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000662
    [16]
    国防科学技术工业委员会. 碳纤维树脂基复合材料层合板疲劳试验方法: GJB 2637-96[S]. 北京: 中国航空工业总公司, 1996: 1-7.

    Commission of Science, Technology and Industry for National Defense. Test methods for fatigue of carbon fiber resin matrix composite laminates: GJB 2637-96[S]. Beijing: Aviation Industry Corporation of China, 1996:1-7(in Chinese).
    [17]
    American Society of Testing Materials International. D3479 Stanard test method for tension-tension fatigue of polymer matrix composite materials: ASTM D3479/D3479M-2012[S]. West Conshohocken: American Society of Testing Materials International, 2012: 1-6
    [18]
    REIFSNIDER K L, HENNEKE E G, STINCHCOMB W W, et al. Damage mechanics and nde of composite laminates[M]. Mechanics of Composite Materials. Amsterdam: Elsevier, 1983: 399-420.
    [19]
    吴富强, 姚卫星. 纤维增强复合材料剩余强度衰减模型[J]. 南京航空航天大学学报, 2008, 40(4): 517-520. doi: 10.3969/j.issn.1005-2615.2008.04.020

    WU F Q, YAO W X. Residual strength degradation model of fiber reinforced plastic[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(4): 517-520(in Chinese). doi: 10.3969/j.issn.1005-2615.2008.04.020
    [20]
    XU M R, HUANG J J, ZENG B Y, et al. Effect of Notch on static and fatigue properties of T800 fabric reinforced composites[J]. Science and Engineering of Composite Materials, 2020, 27(1): 335-345.
    [21]
    SPINDEL J, HAIBACH E. Some considerations in the statistical determination of the slope of SN curves[M]. Statistical Analysis of Fatigue Data. West Conshohocken: American Society of Testing Materials International, 1981.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article Metrics

    Article views(299) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return