Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0566
Citation: FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0566

Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle

doi: 10.13700/j.bh.1001-5965.2021.0566
Funds:  National Natural Science Foundation of China (71601180)
More Information
  • Corresponding author: E-mail:1092442646@qq.com
  • Received Date: 23 Sep 2021
  • Accepted Date: 05 Jan 2022
  • Publish Date: 14 Feb 2022
  • Multi-objective optimization of aerodynamic layout is a key technology in aircraft design. A new multi-objective optimization method is proposed for aerodynamic shape parameters of hypersonic reentry vehicle, and then the influence of the method on the performance of hypersonic reentry vehicle is proved. Through example simulation, the influence of drag and lift on guidance performance is verified and analyzed in detail, with 3 performance indicators, including circular error probable of aircraft landing point, proportion of landing speed greater than 500 m/s, and proportion of maximum flight overload less than 60g, set as the optimization objective. By taking lift characteristics as intermediate parameters, the aerodynamic layout optimization problem divided into two sub problems. Through the lift characteristic optimization based on search algorithm and the shape parameter optimization based on an improved simulated annealing algorithm, the optimization calculation time is reduced, the calculation efficiency is improved, thus optimizing the overall aerodynamic layout of the main body and flap of the aircraft, and obtaining the best aircraft shape under hypersonic flow. The simulation results show that under determined constraints, the optimization algorithm increases the aerodynamic lift of the aircraft under supersonic flow and effectively improves the lift drag ratio. On the premise of not affecting the maximum flight overload, the optimized aircraft shows higher aerodynamic performance, and significantly improved hit accuracy, with the landing speed in compliance with the index requirements, and the performance of the guidance system effectively improved.

     

  • loading
  • [1]
    DECK S, DUVEAU P, D'ESPINEY P, et al. Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations[J]. Aerospace Science and Technology, 2002, 6(3): 171-183. doi: 10.1016/S1270-9638(02)01148-3
    [2]
    LÓPEZ D, DOMÍNGUEZ D, GONZALO J. Optimization of air-ejected rocket/missile geometries under validated supersonic flow field simulations[J]. AIP Conference Proceedings, 2014, 1637(1): 600-606.
    [3]
    乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 62-75.

    QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 62-75(in Chinese).
    [4]
    孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6): 26-37. doi: 10.7527/S1000-6893.2018.21737

    SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 26-37(in Chinese). doi: 10.7527/S1000-6893.2018.21737
    [5]
    车竞, 唐硕, 何开锋. 高超声速飞行器气动布局总体性能优化设计研究[J]. 空气动力学学报, 2009, 27(2): 214-219. doi: 10.3969/j.issn.0258-1825.2009.02.013

    CHE J, TANG S, HE K F. Research on aerodynamic configuration optimization of integral performance for hypersonic cruise vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(2): 214-219(in Chinese). doi: 10.3969/j.issn.0258-1825.2009.02.013
    [6]
    刘文. 高超声速乘波体气动布局优化及稳定性研究[D]. 西安: 西北工业大学, 2018.

    LIU W. Aerodynamic layout optimization and stability study of hypersonic waverider [D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
    [7]
    陈立立, 郭正, 侯中喜, 等. 组合式高超声速飞行器布局设计与优化分析[J]. 气体物理, 2019, 4(6): 29-39. doi: 10.19527/j.cnki.2096-1642.0777

    CHEN L L, GUO Z, HOU Z X, et al. Layout design and optimization analysis of combined hypersonic vehicle[J]. Physics of Gases, 2019, 4(6): 29-39(in Chinese). doi: 10.19527/j.cnki.2096-1642.0777
    [8]
    唐伟, 冯毅, 杨肖峰, 等. 非惯性弹道飞行器气动布局设计实践[J]. 气体物理, 2017, 2(1): 1-12. doi: 10.19527/j.cnki.2096-1642.2017.01.001

    TANG W, FENG Y, YANG X F, et al. Practices of aerodynamic configuration design for non-ballistic trajectory vehicles[J]. Physics of Gases, 2017, 2(1): 1-12(in Chinese). doi: 10.19527/j.cnki.2096-1642.2017.01.001
    [9]
    徐永杰, 王志军, 吴国东, 等. 气动外形对火箭弹弹道特性影响的数值模拟研究[J]. 弹箭与制导学报, 2018, 38(4): 11-14. doi: 10.15892/j.cnki.djzdxb.2018.04.003

    XU Y J, WANG Z J, WU G D, et al. Numerical simulation research on effect of aerodynamic configuration on rocket projectile’s ballistics characteristics[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(4): 11-14(in Chinese). doi: 10.15892/j.cnki.djzdxb.2018.04.003
    [10]
    NGUYEN N V, TYAN M, LEE J W, et al. Investigations on missile configuration aerodynamic characteristics for design optimization[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2014, 57(4): 210-218. doi: 10.2322/tjsass.57.210
    [11]
    VIDANOVIC N, RASUO B, DAMLJANOVIC D, et al. Validation of the CFD code used for determination of aerodynamic characteristics of nonstandard AGARD-B calibration model[J]. Thermal Science, 2014, 18(4): 1223-1233. doi: 10.2298/TSCI130409104V
    [12]
    SAHU J. CFD simulations of a finned projectile with microflaps for flow control[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-15.
    [13]
    OCOKOLJIC G, RASUO B, BENGIN A. Aerodynamic shape optimization of guided missile based on wind tunnel testing and computational fluid dynamics simulation[J]. Thermal Science, 2017, 21(3): 1543-1554. doi: 10.2298/TSCI150515184O
    [14]
    AGEEV N, PAVLENKO A. Minimization of body of revolution aerodynamic drag at supersonic speeds[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(2): 246-256. doi: 10.1108/AEAT-02-2015-0052
    [15]
    VIDANOVIĆ N, RAŠUO B, KASTRATOVIĆ G, et al. Aerodynamic–structural missile fin optimization[J]. Aerospace Science and Technology, 2017, 65: 26-45. doi: 10.1016/j.ast.2017.02.010
    [16]
    KÖRPE D S, KANAT Ö Ö. Aerodynamic optimization of a UAV wing subject to weight, geometric, root bending moment, and performance constraints[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-14.
    [17]
    RIDDLE D B, HARTFIELD R J, BURKHALTER J E, et al. Genetic-algorithm optimization of liquid-propellant missile systems[J]. Journal of Spacecraft and Rockets, 2009, 46(1): 151-159. doi: 10.2514/1.30891
    [18]
    CAO R D, ZHANG X B. Multi-objective optimization of the aerodynamic shape of a long-range guided rocket[J]. Structural and Multidisciplinary Optimization, 2018, 57(4): 1779-1792. doi: 10.1007/s00158-017-1845-7
    [19]
    YANG Y R, JUNG S K, CHO T H, et al. Aerodynamic shape optimization system of a canard-controlled missile using trajectory-dependent aerodynamic coefficients[J]. Journal of Spacecraft and Rockets, 2012, 49(2): 243-249. doi: 10.2514/1.A32064
    [20]
    HE Y L, AGARWAL R K. Shape optimization of NREL S809 airfoil for wind turbine blades using a multi-objective genetic algorithm[C]//32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(10)

    Article Metrics

    Article views(306) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return