Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LI Yongping, ZHU Guangwu, ZHENG Xiaoliang, et al. In-situ measurement of atmospheric density in very low Earth orbits[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1875-1882. doi: 10.13700/j.bh.1001-5965.2021.0618(in Chinese)
Citation: LI Yongping, ZHU Guangwu, ZHENG Xiaoliang, et al. In-situ measurement of atmospheric density in very low Earth orbits[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1875-1882. doi: 10.13700/j.bh.1001-5965.2021.0618(in Chinese)

In-situ measurement of atmospheric density in very low Earth orbits

doi: 10.13700/j.bh.1001-5965.2021.0618
Funds:

Manned Space Program of China Y59003AC40

Meridian Program of China Y91GJC15ES

More Information
  • Corresponding author: LI Yongping, E-mail: lyp@nssc.ac.cn
  • Received Date: 20 Oct 2021
  • Accepted Date: 04 Mar 2022
  • Publish Date: 21 Mar 2022
  • Very low Earth orbit (VLEO) has unique advantages in Earth observation and scientific research due to their low orbital altitude; however, the knowledge of the atmospheric density variation in these orbits is insufficient. A preliminary analysis and discussion of the in-situ results of atmospheric density in VLEOs in China is carried out, based on the description of the history and current status of in-situ exploration of VLEO atmospheric density, and on the summary of the existing in-situ detection techniques of atmospheric density. The results show one order of magnitude difference in atmospheric density between 250 km and 350 km altitudes during the quiet period of the space environment in October 2020. During the orbit ascent and descent, the atmospheric density of VLEOs decreases by 0.025×10-12 kg/m3 and 0.041×10-12 kg/m3 per kilometer, respectively, each 0.5 times less than that of the NRLMSISE00 model. At 40°N, the atmospheric density in the ascending section at midnight (~250 km) is 11.2 times higher than that in the descending section at noon (~420 km), and the effect of altitude is greater than that at local time. At different latitudes, the daily mean ratio of the observed values to the model values decreases from 0.49 at high latitudes to 0.39 at low latitudes, with the NRLMSISE00 model values being larger. At the VLEO, the observed values are generally smaller than the NRLMSISE00 model values, which can provide basic data for atmospheric physical studies and applied research.

     

  • loading
  • [1]
    姜海富, 柴丽华, 周晶晶, 等. 国外超低轨卫星计划及环境效应研究进展[J]. 环境技术, 2015, 33(5): 30-34. doi: 10.3969/j.issn.1004-7204.2015.05.008

    JIANG H F, CHAI L H, ZHOU J J, et al. Super low orbit sate-llite program and study progress of environment effect in foreign countries[J]. Environmental Technology, 2015, 33(5): 30-34(in Chinese). doi: 10.3969/j.issn.1004-7204.2015.05.008
    [2]
    CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences, 2020, 117: 1-18.
    [3]
    BANKS B A, MILLER S K, DE GROH K K, et al. Low earth orbital atomic oxygen interactions with materials: AIAA-2004-5638[R]. Reston: AIAA, 2004.
    [4]
    SAMWEL S W. Low earth orbital atomic oxygen erosion effect on spacecraft materials[J]. Space Research Journal, 2014, 7(1): 1-13. doi: 10.3923/srj.2014.1.13
    [5]
    KUMIKO Y, NOBUO O, MASAHITO T. Effect of relative intensity of 5 eV atomic oxygen and 172 nm vacuum ultraviolet in the synergism of polyimide erosion[J]. High Performance Polymers, 2016, 16(2): 221-234.
    [6]
    王英鉴. 中高层大气对卫星系统的影响[J]. 中国科学(A辑), 2000, 30(S1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK2000S1004.htm

    WANG Y J. The influence of the middle and upper atmosphere on satellite systems[J]. Science in China(Series A), 2000, 30(S1): 17-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK2000S1004.htm
    [7]
    MAROCS F A. New satellite drag modeling capabilities[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006, 8: 5594-5606.
    [8]
    SARRIS T E, TALAAT E R, PALMROTH M, et al. Daedalus: A low-flying spacecraft for the exploration of the lower ther-mosphere-ionosphere[J]. Geoscientific Instrumentation Method and Data Systems, 2020, 9(1): 153-191. doi: 10.5194/gi-9-153-2020
    [9]
    HERRERO F A, MAYR H G, SPENCER N W. Low latitude thermospheric meridional winds between 250 and 450 km altitude: AE-E satellite data[J]. Journal of Atmospheric and Terrestrial Physics, 1988, 50(10-11): 1001-1006. doi: 10.1016/0021-9169(88)90087-6
    [10]
    SPENCER N W, NIEMANN H B, CARIGNAN G R. The neutral-atmosphere temperature instrument[J]. Radio Science, 1973, 8(4): 287-296. doi: 10.1029/RS008i004p00287
    [11]
    SPENCER N W, CARIGNAN G R. In situ measurements of thermospheric composition, temperature and winds by mass spectrometry[J]. Advances in Space Research, 1988, 8(5-6): 107-117. doi: 10.1016/0273-1177(88)90040-3
    [12]
    KILLEEN T L, MCCORMAC F G, BURNSA G, et al. On the dynamics and composition of the high-latitude thermosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1991, 53(9): 797-814. doi: 10.1016/0021-9169(91)90095-O
    [13]
    BALTHAZOR R L, BAILEY G J. Transonic neutral wind in the thermosphere observed by the DE 2 satellite[J]. Journal of Geophysical Research, 2006, 111: A01301.
    [14]
    MARCIN D P, SCOTT E P. An innovative method for measuring drag on small satellites[C]//The 23rd Annual AIAA/USU Conference on Small Satellites, 2009.
    [15]
    EVGENIY S, IGOR B, IVAN T, et al. SSAU project of the nanosatellite SamSat-QB50 for monitoring the Earth's thermosphere parameters[J]. Procedia Engineering, 2015, 104: 139-146.
    [16]
    KONOUE K, IGARASHI N, MAMURA S, et al. Development of super low altitude test satellite(SLATS)[C]//The 28th International Symposium on Space Technology and Science, 2011, 111(239): 43-46.
    [17]
    秦国泰. 强磁暴、能量粒子暴与热层大气密度涨落之间的相关关系[J]. 空间科学学报, 2013, 33(1): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201301008.htm

    QIN G T. Relationship between severe geomagnetic storm, energetic particle storms and thermosphere density strong distur-bances[J]. Chinese Journal of Space Science, 2013, 33(1): 39-47(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201301008.htm
    [18]
    李永平, 朱光武, 秦国泰, 等. 不同高度和不同地磁扰动期间热层大气密度模式值与探测值的显著差异[J]. 地球物理学报, 2014, 57(11): 3703-3714. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201411026.htm

    LI Y P, ZHU G W, QIN G T, et al. Significant difference of the thermospheric density between the model and observation values of satellite during different geomagnetic storm events and different altitudes[J]. Chinese Journal of Geophysics, 2014, 57(11): 3703-3714(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201411026.htm
    [19]
    QIN G, QIU S, YE H, et al. The thermospheric composition different responses to geomagnetic storm in the winter and summer hemisphere measured by "SZ" atmospheric composition detectors[J]. Advances in Space Research, 2008, 42(7): 1281-1287.
    [20]
    李永平, 朱光武, 秦国泰, 等. 地磁扰动期间热层大气N2数密度异常增变[J]. 中国科学: 技术科学, 2014, 44(8): 883-889. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201408008.htm

    LI Y P, ZHU G W, QIN G T, et al. The abnormal variation of N2 number density in thermosphere during geomagnetic distur-bance[J]. Science China: Technological Sciences, 2014, 44(8): 883-889(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201408008.htm
    [21]
    李勰, 徐寄遥, 唐歌实, 等. APOD卫星大气密度数据处理与标校[J]. 地球物理学报, 2018, 61(9): 3567-3576. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809007.htm

    LI X, XU J Y, TANG G S, et al. Processing and calibrating of in-situ atmospheric densities for APOD[J]. Chinese Journal of Geophysics, 2018, 61(9): 3567-3576(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809007.htm
    [22]
    闫亚飞, 李永平. 中高层大气密度研究态势及热点分析[J]. 科技导报, 2020, 38(11): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202011018.htm

    YAN Y F, LI Y P. Development trend and hotspot analysis of middle and upper atmospheric density research[J]. Science & Technology Review, 2020, 38(11): 141-151(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202011018.htm
    [23]
    PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA 15-1-SIA 15-16.
    [24]
    PICONE M, HEDIN A E, DROB D. NRLMSISE-00 model 2001[EB/OL]. [2021-10-01]. http://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html.
    [25]
    EMMERT J T. Thermospheric mass density: A review[J]. Advances in Space Research, 2015, 56(5): 773-824.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(322) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return