Volume 49 Issue 9
Oct.  2023
Turn off MathJax
Article Contents
WANG J M,GUO Y Q,YU H F. Extension method of engine low speed characteristics based on backbone features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2351-2360 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0634
Citation: WANG J M,GUO Y Q,YU H F. Extension method of engine low speed characteristics based on backbone features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2351-2360 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0634

Extension method of engine low speed characteristics based on backbone features

doi: 10.13700/j.bh.1001-5965.2021.0634
Funds:  National Science and Technology Major Project of China (J2019-Ⅴ-0003)
More Information
  • Corresponding author: E-mail:yqguo@nwpu.edu.cn
  • Received Date: 26 Oct 2021
  • Accepted Date: 14 Jan 2022
  • Publish Date: 21 Feb 2022
  • The blowing action of the incoming flow may cause the functioning state of the rotating components to alter when they operate at high altitudes but low speeds. The compressor is in a special “mixer” or “turbine” working state at such a condition, which makes a discontinuous change of efficiency during the dynamic operation of the engine. In order to solve this problem, the method based on the backbone features developed by National Aeronautics and Space Administration (NASA) and General Electric Company (GE) was used to transform the characteristics of rotating parts. It is possible to expand the low-speed range characteristics of rotating parts and successfully prevent the invalidation of the interpolation of efficiency characteristics at low speeds by studying the changing trends of the backbone and off-backbone features at low speeds. Taking a military turbofan engine as an example, the windmilling characteristics under different flight conditions are calculated. The results show that this method can reflect the special working conditions of the compressor with a pressure ratio of less than 1 at low speeds, and the calculation of windmilling characteristics under different flight conditions is reasonable.

     

  • loading
  • [1]
    BRAIG W, SCHULTE H, RIEGLER C. Comparative analysis of the windmilling performance of turbojet and tbrbofan engines[J]. Journal of Propulsion and Power, 1999, 15(2): 326-333. doi: 10.2514/2.5430
    [2]
    WALKER C L, FENN D B. Investigation of power extraction characteristics and braking requirements of a windmilling turbojet engine[J]. Australian Veterinary Journal, 1952, 48(5): 258-62.
    [3]
    BINDER N, COURTY-AUDREN S K, DUPLAA S, et al. Theoretical analysis of the aerodynamics of low-speed fans in free and load-controlled windmilling operation[J]. Journal of Turbomachinery, 2015, 137(10): 101001. doi: 10.1115/1.4030308
    [4]
    KURZKE J. How to get component maps for aircraft gas turbine performance calculations[C]//ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. Birmingham: American Society of Mechanical Engineers, 1996.
    [5]
    XU S Y, ZHU Z L, LIU Z D, et al. Research on the starting characteristics and control law of two spool turbofan engine[J]. Energy Procedia, 2019, 158: 1765-1771. doi: 10.1016/j.egypro.2019.01.418
    [6]
    王松岭, 张学镭, 陈海平, 等. 基于相似定律外推压气机通用特性曲线的方法[J]. 动力工程, 2007, 27(2): 169-173.

    WANG S L, ZHANG X L, CHEN H P, et al. Method based on similarity laws for extrapolating generalized performance curves of compressors[J]. Journal of Power Engineering, 2007, 27(2): 169-173(in Chinese).
    [7]
    GAUDET S R, DONALD GAUTHIER J E. A simple sub-idle component map extrapolation method[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. Montreal: ASME, 2009: 29-37.
    [8]
    JONES G, CURNOCK B. Compressor characteristics in gas turbine performance modelling: 2001-GT-0384 [R]. New Orleans : ASME , 2001.
    [9]
    王占学, 王永杰, 乔渭阳, 等. 涡扇发动机低转速部件特性扩展和风车状态性能模拟[J]. 推进技术, 2006, 27(2): 146-149. doi: 10.3321/j.issn:1001-4055.2006.02.012

    WANG Z X, WANG Y J, QIAO W Y, et al. Extrapolating component maps into the low speed and simulation of windmilling performance of turbofan engine[J]. Journal of Propulsion Technology, 2006, 27(2): 146-149(in Chinese). doi: 10.3321/j.issn:1001-4055.2006.02.012
    [10]
    HOWARD J. Sub-idle modelling of gas turbines: Altitude relight and windmilling[D]. Cranfield : Cranfield University, 2007.
    [11]
    ZACHOS P K, ASLANIDOU I, PACHIDIS V, et al. A sub-idle compressor characteristic generation method with enhanced physical background[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(8): 1.
    [12]
    GOTO T, KATO D, OHTA Y, et al. Unsteady flow structure in an axial compressor at windmill condition[C]//Proceedings of ASME Turbo Expo 2014. Düsseldorf: ASME, 2014.
    [13]
    ZACHOS P K, PENGUE F, PACHIDIS V, et al. Flowfield investigation of a compressor cascade at high incidence—part 2: Numerical analysis[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. Orlando : ASME, 2010: 355-362.
    [14]
    饶高, 苏三买, 翟向博. 指数外推法和支持向量机相结合的压气机特性扩展方法[J]. 航空动力学报, 2017, 32(3): 749-755. doi: 10.13224/j.cnki.jasp.2017.03.029

    RAO G, SU S M, ZHAI X B. Method of compressor characteristic extension combining exponent extrapolation method with support vector machine[J]. Journal of Aerospace Power, 2017, 32(3): 749-755(in Chinese). doi: 10.13224/j.cnki.jasp.2017.03.029
    [15]
    CONVERSE G L, GIFFIN R. Extended parametric representation of compressor fans and turbines. Volume 1: CMGEN user’s manual: NASA-CR-174645 [R]. Washington D. C. : NASA, 1984.
    [16]
    RIEGLER C, BAUER M, KURZKE J. Some aspects of modelling compressor behavior in gas turbine performance calculations[C]// ASME Turbo Expo 2000: Power for Land, Sea, and Air. Munich: ASME, 2000.
    [17]
    马文通, 苏明, 余南华. 变几何多级轴流式压气机特性估算[J]. 中国电机工程学报, 2008, 28(11): 72-76. doi: 10.3321/j.issn:0258-8013.2008.11.013

    MA W T, SU M, YU N H. Characteristic estimation method of variable geometry multistage axial-flow compressors[J]. Proceedings of the CSEE, 2008, 28(11): 72-76(in Chinese). doi: 10.3321/j.issn:0258-8013.2008.11.013
    [18]
    SETHI V, DOULGERIS G, PILIDIS P, et al. The map fitting tool methodology: Gas turbine compressor off-design performance modeling[J]. Journal of Turbomachinery, 2013, 135(6): 061010. doi: 10.1115/1.4023903
    [19]
    DIXON S L, HALL C A . Fluid mechanics and thermodynamics of turbomachinery[M]. Oxford : Pergamon Press, 1998.
    [20]
    FLAGG E E. Analytical procedure and computer program for determining the off-design performance of axial flow turbines: NASA-CR-710 [R]. Washington D. C. : NASA, 1967.
    [21]
    CONVERSE G L. Extended parametric representation of compressor fans and turbines volume Ⅱ- PART user’s manual: NASA-CR-174646 [R]. Washington D. C. : NASA, 1984.
    [22]
    施洋. 民用大涵道比涡扇发动机全状态性能模型研究[D]. 西安: 西北工业大学, 2017.

    SHI Y. A research on full states performance model for civil high bypass turbofan engine[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
    [23]
    高扬, 田晓平, 李秋锋. 基于换算扭矩特性的混排涡扇发动机风车状态性能模拟[J]. 现代机械, 2017(6): 10-13. doi: 10.13667/j.cnki.52-1046/th.2017.06.003

    GAO Y, TIAN X P, LI Q F. Simulation of windmilling performance for mixed flow turbofan engine based on converted torque characteristics[J]. Modern Machinery, 2017(6): 10-13(in Chinese). doi: 10.13667/j.cnki.52-1046/th.2017.06.003
    [24]
    PRASAD D, LORD W K. Internal losses and flow behavior of a turbofan stage at windmill[J]. Journal of Turbomachinery, 2010, 132(3): 1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(80) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return