Volume 49 Issue 9
Oct.  2023
Turn off MathJax
Article Contents
SHI X D,LI R P,ZHAO H X,et al. Non-standard interface aviation RF cable test method based on TRL[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2207-2217 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0645
Citation: SHI X D,LI R P,ZHAO H X,et al. Non-standard interface aviation RF cable test method based on TRL[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2207-2217 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0645

Non-standard interface aviation RF cable test method based on TRL

doi: 10.13700/j.bh.1001-5965.2021.0645
Funds:  National Natural Science Foundation of China (51377161)
More Information
  • Corresponding author: E-mail:zhx2581@163.com
  • Received Date: 29 Oct 2021
  • Accepted Date: 14 Jan 2022
  • Publish Date: 24 Feb 2022
  • Aircraft radio frequency (RF) cables are the main medium for transmitting signals. There are currently various non-standard interface cables, and in order to use standard interface instruments for performance testing, precise adapter leads are required. However, the precise adapter leads have high requirements on parameters such as impedance and transmission loss, and precise adapter cables are prone to performance degradation, resulting in large errors in test results. Therefore, this paper proposes a non-standard interface aircraft RF cable test method based on TRL for the problems that exist when applying precision adapter leads. Firstly, the cascade transmission parameter method is used to model the test leads and the cable under test, and then the improved TRL calibration method is used to de-embed the test leads to obtain the scattering parameters of the tested cable, so as to evaluate the performance of the aircraft RF cable. The technique was used to test aircraft RF cables, and the findings show that, with the exception of a few resonance spots, the maximum error in return loss is approximately 1 dB and the maximum error in transmission loss is approximately 0.2 dB. This validates the method’s viability and efficacy.

     

  • loading
  • [1]
    邹维明, 刘蕾, 姜睿智, 等. 非标准接口射频电缆性能测试细节控制浅谈[J]. 计测技术, 2017, 37(S1): 269-271.

    ZOU W M, LIU L, JIANG R Z, et al. Talking about the detailed control of the performance test of the non-standard interface RF cable[J]. Measurement Technology, 2017, 37(S1): 269-271(in Chinese).
    [2]
    高维胜. 浅谈宇航级电连接器射频性能测试技术[J]. 机电元件, 2018, 38(2): 38-43.

    GAO W S. Talking about the testing technology of RF performance of aerospace electrical connector[J]. Electromechanical Components, 2018, 38(2): 38-43(in Chinese).
    [3]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 射频射频电缆组件第1部分: 总规范 一般要求和试验方法: GB/T 17738.1—2013[S]. 北京: 中国标准出版社, 2014: 5-9.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Radio frequency and coaxial cable assemblies. Part 1: Generic specification-General requirements and test methods: GB/T 17738.1—2013[S]. Beijing: Standards Press of China, 2014: 5-9( in Chinese).
    [4]
    IEC. Radio frequency and coaxial cable assemblies. Part 1: Generic specification-General requirements and test methods: IEC 60966-1[S]. Geneva: IEC, 2019.
    [5]
    BIANCO B, PARODI M, RIDELLA S, et al. Launcher and microstrip characterization[J]. IEEE Transactions on Instrumentation and Measurement, 1976, IM-25(4): 320-323. doi: 10.1109/TIM.1976.6312235
    [6]
    FRANZEN N R, SPECIALE R A . A new procedure for system calibration and error removal in automated S-parameter measurements[C]//Proceedings of the 5th European Microwave Conference. Piscataway: IEEE Press, 1975.
    [7]
    ENGEN G F, HOER C A. Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer[J]. IEEE Transactions on Microwave Theory and Techniques, 1979, 27(12): 987-993. doi: 10.1109/TMTT.1979.1129778
    [8]
    李新伟, 易磊. 非标器件S参数去嵌入测试方法研究[J]. 计量与测试技术, 2014, 41(6): 30-32.

    LI X W, YI L. Research on the testing method of S device parameters of non-standard[J]. Metrology & Measurement Technique, 2014, 41(6): 30-32(in Chinese).
    [9]
    彭安虎, 韩周安, 李志强. T/R阵列自动测试系统去嵌入技术研究[J]. 中国测试, 2021, 47(7): 92-98.

    PENG A H, HAN Z A, LI Z Q. Research on de-embedding technology of T/R array automatic test system[J]. China Measurement & Testing Technology, 2021, 47(7): 92-98(in Chinese).
    [10]
    吴宇, 高源慈, 钟催林, 等. 微波射频差分探针去嵌入理论研究[J]. 电子测量技术, 2020, 43(4): 16-22.

    WU Y, GAO Y C, ZHONG C L, et al. Microwave RF differential probe de-embedding theory research[J]. Electronic Measurement Technology, 2020, 43(4): 16-22(in Chinese).
    [11]
    孟文营, 穆卓, 王身云. 一种PIN二极管参数的提取方法与应用[J]. 电子元件与材料, 2019, 38(4): 32-36.

    MENG W Y, MU Z, WANG S Y. Parameter extraction of PIN diode and its applications[J]. Electronic Components and Materials, 2019, 38(4): 32-36(in Chinese).
    [12]
    刘迪. 怎样设计和验证TRL校准件及具体过程[J]. 电子产品世界, 2008(3): 123-126. doi: 10.3969/j.issn.1005-5517.2008.03.024

    LIU D. How to design and verify TRL Cal Kit also implementation of TRL calibration[J]. Electronic Engineering & Product World, 2008(3): 123-126(in Chinese). doi: 10.3969/j.issn.1005-5517.2008.03.024
    [13]
    廖进昆, 刘仁厚. LRL校准法及其在微波测量中的应用[J]. 电子科技大学学报, 2000, 29(2): 149-152.

    LIAO J K, LIU R H. LRL calibration method and its application to microwave measurement[J]. Journal of University of Electronic Science and Technology of China, 2000, 29(2): 149-152(in Chinese).
    [14]
    ZUIGA-JUAREZ J E, REYNOSO-HERNANDEZ J A, MAYA-SANCHEZ M C. An improved multiline TRL method[C]//Proceedings of the 67th ARFTG Microwave Measurements Conference. Piscataway: IEEE Press, 2008: 139-142.
    [15]
    MARKS R B. A multiline method of network analyzer calibration[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(7): 1205-1215. doi: 10.1109/22.85388
    [16]
    WANG M, ZHAO Y J, JIN Y M, et al. Sensitivity analysis of multiport S-parameter due to non-ideal TRL calibration standards[J]. Radio Science, 2017, 52(9): 1096-1105. doi: 10.1002/2017RS006380
    [17]
    STEER M B, GOLDBERG S B, RINNE G, et al. Introducing the through-line deembedding procedure[C]//Proceedings of the International Microwave Symposium Digest. Piscataway: IEEE Press, 1992: 1455-1458.
    [18]
    易波, 王为, 刘培国, 等. 基于改进TRL校准算法的二极管参数测量[J]. 中国舰船研究, 2015, 10(2): 121-124. doi: 10.3969/j.issn.1673-3185.2015.02.023

    YI B, WANG W, LIU P G, et al. Measurement of PIN diode parameters based on TRL calibration algorithm[J]. Chinese Journal of Ship Research, 2015, 10(2): 121-124(in Chinese). doi: 10.3969/j.issn.1673-3185.2015.02.023
    [19]
    梁子健. 基于非均匀传输线重构的滤波器设计与电缆测试技术研究[D]. 广州: 华南理工大学, 2017.

    LIANG Z J. Design of filters and cable test technology based on reconstruction of non-uniform transmission lines[D]. Guangzhou: South China University of Technology, 2017(in Chinese) .
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views(245) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return