Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
CHEN Bin, LIU Yue, LI Qingzhen, et al. Runway temperature hybrid prediction based on MFOA-KELM residual correction under ice and snow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2153-2164. doi: 10.13700/j.bh.1001-5965.2021.0646(in Chinese)
Citation: CHEN Bin, LIU Yue, LI Qingzhen, et al. Runway temperature hybrid prediction based on MFOA-KELM residual correction under ice and snow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2153-2164. doi: 10.13700/j.bh.1001-5965.2021.0646(in Chinese)

Runway temperature hybrid prediction based on MFOA-KELM residual correction under ice and snow

doi: 10.13700/j.bh.1001-5965.2021.0646
Funds:

Joint Fund of Civil Aviation Research of National Natural Science Foundation of China and Civil Aviation Administration of China U1933107

More Information
  • Corresponding author: CHEN Bin, E-mail: chenbindavid@163.com
  • Received Date: 29 Oct 2021
  • Accepted Date: 28 Feb 2022
  • Publish Date: 26 Apr 2022
  • The runway surface temperature short-term accurate prediction is one of the key factors for runway icing warning.In order to solve the problem of error accumulation caused by a single mechanistic model with increasing prediction time, a hybrid runway temperature prediction method under ice and snow is proposed.The runway temperature mechanism model is combined with the kernel extreme learning machine (KELM) to develop a data-driven model for correcting the mechanism residuals. To address the problem that the fruit fly optimization algorithm (FOA) is slow to converge (converges slowly) and easily falls into local minima. By introducing a distance expansion factor and a weight update function, it is possible to modify the effect of the FOA's search for the global optimal solution and prevent falling into local minima. The modified fruit fly optimization algorithm (MFOA) is used to jointly optimize the KELM regularization parameter and the kernel parameter. A hybrid runway temperature prediction model is developed based on the modified fruit fly optimized kernel extreme learning machine (MFOA-KELM) with the actual data of runway temperature under ice and snow. The hybrid model is simulated and tested under different time lengths. The experimental results show that compared with the single mechanism prediction model, the mean absolute error of the MFOA-KELM hybrid model is reducedby at least 61.43% when the prediction length is 120 minutes, and the average prediction accuracy is 91.25% when the residual threshold is ±0.5℃. It can be seen that the MFOA-KELM hybrid model has higher prediction accuracy. The research findings show that this hybrid prediction method can provide a new idea for short time accurate prediction of airport runway temperatures.

     

  • loading
  • [1]
    KRŠMANC R, SLAK A Š, DEMŠAR J. Statistical approach for forecasting road surface temperature[J]. Meteorological Applications, 2013, 20(4): 439-446. doi: 10.1002/met.1305
    [2]
    汤筠筠, 郭忠印. 基于自回归求和移动平均的冬季路温短临预测[J]. 同济大学学报(自然科学版), 2017, 45(12): 1824-1829. doi: 10.11908/j.issn.0253-374x.2017.12.012

    TANG J J, GUO Z Y. Winter road temperature short prognosis based on autoregressive summation moving average[J]. Journal of Tongji University (Natural Science Edition), 2017, 45(12): 1824-1829(in Chinese). doi: 10.11908/j.issn.0253-374x.2017.12.012
    [3]
    秦健, 孙立军. 国外沥青路面温度预估方法综述[J]. 中外公路, 2005, 25(6): 19-23. doi: 10.3969/j.issn.1671-2579.2005.06.006

    QIN J, SUN L J. A review of foreign asphalt pavement temperature prediction methods[J]. Chinese and Foreign Highways, 2005, 25(6): 19-23(in Chinese). doi: 10.3969/j.issn.1671-2579.2005.06.006
    [4]
    BARBERE S. Calculation of maximum pavement temperatures from weather reports[R]. Washington, D.C. : National Research Council, 1957: 1-8.
    [5]
    CHRISTISON J T, ANDERSON K O. The response of asphalt pavements to low temperature climatic environments[C]//International Conference on the Structural Design of Asphalt Pavements, 1972: 44-56.
    [6]
    严作人. 层状路面体系的温度场分析[J]. 同济大学学报, 1984(3): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ198403006.htm

    YAN Z R. Temperature field analysis of laminated pavement systems[J]. Journal of Tongji University, 1984(3): 76-85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ198403006.htm
    [7]
    HU Y, ALMKVIST E, LINDBERG F, et al. The use of screening effects in modelling route-based daytime road surface temperature[J]. Theoretical and Applied Climatology, 2016, 125(1): 303-319.
    [8]
    NUIJTEN A D W. Runway temperature prediction, a case study for Oslo Airport, Norway[J]. Cold Regions Science and Technology, 2016, 125: 72-84. doi: 10.1016/j.coldregions.2016.02.004
    [9]
    邱金晶, 陈锋, 张珏, 等. 浙江省高速公路路面温度预报模型性能检验及应用[J]. 气象科技, 2020, 48(4): 518-528. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202004011.htm

    QIU J J, CHEN F, ZHANG J, et al. Performance test and application of highway pavement temperature forecasting model in Zhejiang province[J]. Meteorological Science and Technology, 2020, 48(4): 518-528(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202004011.htm
    [10]
    赵鸿铎, 姚祖康, 张长安, 等. 飞机除冰液对停机坪水泥混凝土的影响[J]. 交通运输工程学报, 2004, 4(2): 1-5. doi: 10.3321/j.issn:1671-1637.2004.02.001

    ZHAO H D, YAO Z K, ZHANG C A, et al. Effects of aircraft de-icing fluid on apron cement concrete[J]. Journal of Transportation Engineering, 2004, 4(2): 1-5(in Chinese). doi: 10.3321/j.issn:1671-1637.2004.02.001
    [11]
    孙立军, 秦健. 沥青路面温度场的预估模型[J]. 同济大学学报(自然科学版), 2006, 34(4): 480-483. doi: 10.3321/j.issn:0253-374X.2006.04.011

    SUN L J, QIN J. Prediction model for temperature field of asphalt pavement[J]. Journal of Tongji University (Natural Science Edition), 2006, 34(4): 480-483(in Chinese). doi: 10.3321/j.issn:0253-374X.2006.04.011
    [12]
    姚源朝, 仇鹏, 许建良, 等. 基于混合模型的气流床气化炉建模[J]. 化工学报, 2021, 72(5): 2727-2734. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202105034.htm

    YAO Y Z, QIU P, XU J L, et al. Modeling of a gasifier in a fluid bed based on a hybrid model[J]. Journal of Chemical Engineering, 2021, 72(5): 2727-2734(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202105034.htm
    [13]
    成庶, 刘嘉文, 伍珣, 等. 基于特征提取与误差补偿的金属化薄膜电容器剩余寿命预测[J]. 中国电机工程学报, 2022, 42(7): 2672-2680. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202207021.htm

    CHENG S, LIU J W, WU X, et al. Residual life prediction of metalized film capacitors based on feature extraction and error compensation[J]. Proceedings of the CSEE, 2022, 42(7): 2672-2680(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202207021.htm
    [14]
    HUANG G B. An insight into extreme learning machines: Random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390. doi: 10.1007/s12559-014-9255-2
    [15]
    亓孝武, 李可军, 于小晏, 等. 基于核极限学习机和Bootstrap方法的变压器顶层油温区间预测[J]. 中国电机工程学报, 2017, 37(19): 5821-5828. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201719033.htm

    QI X W, LI K J, YU X Y, et al. Transformer top oil temperature interval prediction based on nuclear limit learning machine and Bootstrap method[J]. Proceedings of the CSEE, 2017, 37(19): 5821-5828(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201719033.htm
    [16]
    PAN W T. A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26: 69-74.
    [17]
    MYTHILI S, KUMAR A V. Hybrid feature selection and heterogeneous clustering ensemble framework for detection of circulating tumor cells[J]. Journal of Medical Imaging and Health Informatics, 2016, 6(5): 1160-1166.
    [18]
    王东. 在线核极限学习机的改进与应用研究[D]. 蚌埠: 安徽财经大学, 2015.

    WANG D. Research on the improvement and application of online kernel limit learning machine[D]. Bengbu: Anhui University of Finance and Economics, 2015(in Chinese).
    [19]
    皮骏, 马圣, 张奇奇, 等. 基于改进果蝇算法优化的GRNN航空发动机排气温度预测模型[J]. 航空动力学报, 2019, 34(1): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201901002.htm

    PI J, MA S, ZHANG Q Q, et al. Optimized GRNN aero-engine exhaust temperature prediction model based on improved fruit fly algorithm[J]. Journal of Aerodynamics, 2019, 34(1): 8-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201901002.htm
    [20]
    周淑贞. 气象学与气候学[M]. 北京: 高等教育出版社, 2004.

    ZHOU S Z. Meteorology and climatology[M]. Beijing: Higher Education Press, 2004(in Chinese).
    [21]
    翁笃鸣, 李炬, 高歌. 晴天太阳总辐射的参数化及气候计算[J]. 气象科学, 1997, 17(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199701000.htm

    WENG D M, LI J, GAO G. Parameterization of total solar radiation on sunny days and climate calculation[J]. Meteorological Science, 1997, 17(1): 1-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199701000.htm
    [22]
    戚春香, 李瑶, 杨简, 等. 青藏高原机场跑道多年冻土地基温度场特征[J]. 交通运输工程学报, 2019, 19(1): 33-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201901007.htm

    QI C X, LI Y, YANG J, et al. Characteristics of multi-year permafrost foundation temperature field of airport runway on Qinghai-Tibet Plateau[J]. Journal of Transportation Engineering, 2019, 19(1): 33-47(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201901007.htm
    [23]
    顾尔祚. 流体力学有限差分法基础[M]. 上海: 上海交通大学出版社, 1988.

    GU E Z. Fundamentals of finite difference method for fluid mechanics[M]. Shanghai: Shanghai Jiaotong University Press, 1988(in Chinese).
    [24]
    杨锡运, 邢国通, 马雪, 等. 一种核极限学习机分位数回归模型及风电功率区间预测[J]. 太阳能学报, 2020, 41(11): 300-306. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202011040.htm

    YANG X Y, XING G T, MA X, et al. A kernel limit learning machine quantile regression model and wind power interval prediction[J]. Journal of Solar Energy, 2020, 41(11): 300-306(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202011040.htm
    [25]
    SURJANOVIC S, BINGHAM D. Virtual library of simulation experiments: Test functions and datasets[EB/OL]. [2021-10-01]. http://www.sfu.ca/~ssurjano.
    [26]
    蔡赛男, 宋卫星, 班利明, 等. 基于鲸鱼算法优化LSSVM的滚动轴承故障诊断[J]. 控制与决策, 2022, 37(1): 230-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202201025.htm

    CAI S N, SONG W X, BAN L M, et al. Fault diagnosis of rolling bearings based on whale algorithm optimized LSSVM[J]. Control and Decision Making, 2022, 37(1): 230-236(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202201025.htm
    [27]
    谷远利, 张源, 芮小平, 等. 基于免疫算法优化LSSVM的短时交通流预测[J]. 吉林大学学报(工学版), 2019, 49(6): 1852-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201906015.htm

    GU Y L, ZHANG Y, RUI X P, et al. Short-time traffic flow prediction based on immune algorithm optimized LSSVM[J]. Journal of Jilin University (Engineering Edition), 2019, 49(6): 1852-1857(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201906015.htm
    [28]
    吴桂芳, 崔勇, 刘宏, 等. 基于差分进化算法的三维电场传感器解耦标定方法[J]. 电工技术学报, 2021, 36(19): 3993-4001. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202119004.htm

    WU G F, CUI Y, LIU H, et al. A decoupled calibration method for three-dimensional electric field sensors based on differential evolutionary algorithm[J]. Journal of Electrical Engineering Technology, 2021, 36(19): 3993-4001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202119004.htm
    [29]
    中国民用航空局. 民用机场水泥混凝土道面设计规范: MH/T 5004—2010[S]. 北京: 中国民用航空局, 2010.

    Civil Aviation Administration of China. Specification for airportcement concrete pavement design: MH/T 5004—2010[S]. Beijing: Civil Aviation Administration of China, 2010(in Chinese).
    [30]
    周哲韬, 刘路, 宋晓, 等. 基于Transformer模型的滚动轴承剩余使用寿命预测方法[J/OL]. 北京航空航天大学学报, 2021(2021-07-12)[2021-10-26]. https://doi.org/10.13700/j.bh.1001-5965.2021.0247.

    ZHOU Z T, LIU L, SONG X, et al. A method for predicting the remaining service life of rolling bearings based on Transformer model[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2021(2021-07-12)[2021-10-26]. https://doi.org/10.13700/j.bh.1001-5965.2021.0247(in Chinese).
    [31]
    陈景龙, 王日新, 李玉庆, 等. 一种基于SD-ICA的卫星电池健康状态估计方法[J]. 北京航空航天大学学报, 2021, 47(10): 2058-2067. doi: 10.13700/j.bh.1001-5965.2020.0376#viewType=Abstract

    CHEN J L, WANG R X, LI Y Q, et al. A SD-ICA-based method for satellite battery health state estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2058-2067(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0376#viewType=Abstract
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views(351) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return