Volume 49 Issue 9
Oct.  2023
Turn off MathJax
Article Contents
SUN M M,GENG H,HU J,et al. Discharge model of divergent magnetic field ion thruster of 10 cm diameter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2258-2266 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0648
Citation: SUN M M,GENG H,HU J,et al. Discharge model of divergent magnetic field ion thruster of 10 cm diameter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2258-2266 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0648

Discharge model of divergent magnetic field ion thruster of 10 cm diameter

doi: 10.13700/j.bh.1001-5965.2021.0648
Funds:  National Natural Science Foundation of China (61901202); China Postdoctoral Science Foundation (2019M653906); Key Projects of the Education Department of Hunan Province (19A440); Hunan Provincial Natural Science Foundation of China (2021JJ30564); Doctoral Startup Fund of University of South China (190XQD013)
More Information
  • Corresponding author: E-mail:smmhappy@163.com
  • Received Date: 29 Oct 2021
  • Accepted Date: 07 Jan 2022
  • Publish Date: 14 Feb 2022
  • A discharge model of the divergent magnetic field ion thruster (Kaufman thruster) of 10 cm diameter is established with COMSOL multi-physical field coupling software to study the internal discharge process of the thruster and to provide reference for subsequent engineering improvement. The key discharge parameters are obtained and verified through experiments. The calculation results show a magnetic field formed between the upstream and downstream magnetic poles in the discharge chamber with strong divergent characteristics. Due to the orthogonal electric field, the Hall drift of the electrons occur with the magnetic field line as the guiding center. The gas pressure in the discharge chamber is uniformly distributed in the range of 0.1−0.11 Pa, with the neutral atom density in most areas about 1.5×1019 m−3, and the fluid velocity in the range of 0.2−0.9 m/s. The fluid shows obvious characteristics of viscous flow. The peak electron density appears in the cathode outlet region, which is about 8.57×1018 m−3, while the plasma density near the anode wall and the upstream of the screen grid is about 6.8×1017 m−3. The results measured by E×B probe show that the proportion of divalent ions in the total beam ions is 14.1%. The comparison error between the theoretical beam current value of 0.353 mA and the measured beam current value of 0.323 mA is 9%, which is mainly due to the simulation setting and the measurement error. The discharge model established in this paper can provide rapid discharge parameter analysis and reference for optimal design of the thruster.

     

  • loading
  • [1]
    GRAY H, SMITH P, FERN D. Design and development of the UK-10 ion propulsion system: AIAA-1996-3084[R]. Reston: AIAA, 1996.
    [2]
    BASSNER H, KILLINGER R, MARX M, et al. Ion propulsion for drag compensation of GOCE: AIAA-2000-3417[R]. Reston: AIAA, 2000.
    [3]
    CORBETT M, EDWARDS C. Thrust control algorithms for the GOCE ion propulsion assembly: IEPC-2007-228[R]. Florence: IEPC, 2007.
    [4]
    TIGHE G, CHIEN R, SOLIS E, et a1. Performance evaluation of the XIPS-25 cm thruster for application to NASA discovery missions: AIAA-2006-4666[R]. Reston: AIAA, 2006.
    [5]
    赵以德, 吴宗海, 张天平, 等. 离子推力器多模式化研究[J]. 推进技术, 2020, 41(1): 187-193. doi: 10.13675/j.cnki.tjjs.190357

    ZHAO Y D, WU Z H, ZHANG T P, et al. Research on multi-mode realization of ion thruster[J]. Journal of Propulsion Technology, 2020, 41(1): 187-193(in Chinese). doi: 10.13675/j.cnki.tjjs.190357
    [6]
    MILDER N. A survey and evaluation of research on the discharge chamber plasma of a Kaufman thruster: AIAA-1969-494[R]. Reston: AIAA, 1969.
    [7]
    GOEBEL D. Ion source discharge performance and stability[J]. Physics of Fluids, 1982, 25(6): 1093-1102. doi: 10.1063/1.863842
    [8]
    BROPHY R, WILBUR P. Calculation of plasma properties in ion sources: AIAA-1985-2006[R]. Reston: AIAA, 1985.
    [9]
    JAMES A. Particle based plasma simulation for an ion engine discharge chamber[D]. Dayton: Wright State Niversity, 2007: 87-88.
    [10]
    MILLIGAN D, GABRIEL S. Generation of experimental plasma parameter maps around the baffle aperture of a Kaufman (UK-25) ion thruster[J]. Acta Astronautica, 2009, 64(2): 952-968.
    [11]
    OZAKI T, KASAI Y, NAKAGAWA T, et al. In-orbit operation of 20 mN class xenon ion engine for ETS-Ⅷ: IEPC-2007-084[R]. Florence: IEPC, 2007.
    [12]
    OZAKI T, NISHIDA E, KASAI Y, et al. Development status of xenon ion engine subsystem for ETS-Ⅷ: AIAA-2003-2215[R]. Reston: AIAA, 2003.
    [13]
    杨福全, 王成飞, 胡竟, 等. 超低轨道卫星应用离子电推进技术方案[J]. 中国空间科学技术, 2021, 1(3): 1-8. doi: 10.16708/j.cnki.1000-758X.2021.0038

    YANG F Q, WANG C F, HU J, et al. Ion-electric propulsion technology scheme for ultra-low orbit satellites[J]. Chinese Space Science and Technology, 2021, 1(3): 1-8(in Chinese). doi: 10.16708/j.cnki.1000-758X.2021.0038
    [14]
    杨福全, 胡竟, 郭德洲, 等. LIPS-100离子推力器挡板通道面积优化研究[J]. 真空与低温, 2021, 2(5): 395-399. doi: 10.3969/j.issn.1006-7086.2021.04.013

    YANG F Q, HU J, GUO D Z, et al. Study on optimization of baffle channel area of LIPS-100 ion thruster[J]. Vacuum and Cryogenics, 2021, 2(5): 395-399(in Chinese). doi: 10.3969/j.issn.1006-7086.2021.04.013
    [15]
    吴辰宸, 顾左. Kaufman型离子推力器束流调节理论与试验研究[J]. 真空科学与技术学报, 2015, 35(11): 1368-1373. doi: 10.13922/j.cnki.cjovst.2015.11.16

    WU C C, GU Z. Theoretical and experimental studies of beam current regulation of Kaufman-type ion thruster[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(11): 1368-1373(in Chinese). doi: 10.13922/j.cnki.cjovst.2015.11.16
    [16]
    陈娟娟, 张天平, 刘明正, 等. LIPS-200离子推力器放电室原初电子动力学行为的数值模拟研究[J]. 推进技术, 2015, 36(1): 155-160.

    CHEN J J, ZHANG T P, LIU M Z, et al. Investigation on dynamical behavior of primary electrons in LIPS-200 ion thruster discharge chamber[J]. Journal of Propulsion Technology, 2015, 36(1): 155-160(in Chinese).
    [17]
    龙建飞, 张天平, 杨威, 等. 离子推力器推力密度特性[J]. 物理学报, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507

    LONG J F, ZHANG T P, YANG W, et al. Thrust density characteristics of ion thruster[J]. Acta Physica Sinica, 2018, 67(2): 022901(in Chinese). doi: 10.7498/aps.67.20171507
    [18]
    GOEBEL D, KATZ I. Fundamentals of electric propulsion: Ion and hall thrusters[M]. New York: Wiley, 2005: 142-145.
    [19]
    CLAUSING P. The flow of highly rarefied gases through tubes of arbitrary length[J]. Journal of Vacuum Science and Technology, 1971, 8(2): 636-646.
    [20]
    SUM M M, ZHANG T P, WEN X D, et al. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode[J]. Plasma Science and Technology, 2018, 20(1): 025503.
    [21]
    孙明明, 张天平, 吴先明. 20 cm离子推力器放电室流场计算模拟[J]. 强激光与粒子束, 2015, 27(5): 054003. doi: 10.11884/HPLPB201527.054003

    SUM M M, ZHANG T P, WU X M. Flow field simulation of 20 cm diameter ion thruster discharge chamber[J]. High Power Laser and Particle Beams, 2015, 27(5): 054003(in Chinese). doi: 10.11884/HPLPB201527.054003
    [22]
    WIRZ R, KATZ I. Plasma processes of DC ion thruster discharge chambers: AIAA-2005-3690[R]. Reston: AIAA, 2005.
    [23]
    MILLER J, PULLINS S, LEVANDIER D, et al. Xenon charge exchange cross sections for electrostatic thruster models[J]. Journal of Applied Physics, 2002, 91(3): 984-991. doi: 10.1063/1.1426246
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(109) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return