Volume 49 Issue 9
Oct.  2023
Turn off MathJax
Article Contents
HE T Y,DONG Y,WANG H,et al. Design and optimization of modular parabolic deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2473-2481 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0652
Citation: HE T Y,DONG Y,WANG H,et al. Design and optimization of modular parabolic deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2473-2481 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0652

Design and optimization of modular parabolic deployable mechanism

doi: 10.13700/j.bh.1001-5965.2021.0652
Funds:  National Natural Science Foundation of China (51635002)
More Information
  • Corresponding author: E-mail:zhaojunpeng@buaa.edu.cn
  • Received Date: 31 Oct 2021
  • Accepted Date: 25 Jan 2022
  • Publish Date: 22 Feb 2022
  • As an important functional component of a satellite, a parabolic antenna is a basis for realizing remote sensing measurement and wireless communication. In order to solve the difficulty of configuration design and stiffness matching of modular parabolic antenna deployable mechanism, a configuration method of rib element deployable mechanism based on scissors mechanism is proposed, and the rib element deployable mechanism is designed. Through kinematic analysis, it is verified that the same deployable mechanism can envelope different paraboloid-fitted spheres through the modification of parameters. The configuration of kinematic pairs of rotatable rib parts is based on a concept for solving the unfolding process of the multi-module deployable mechanism by the envelope cone approach.The configuration parameters of the rib element deployable mechanism are improved to increase natural frequency and decrease overall quality, and the finite element model of the multi-module deployable mechanism is built. The non-inferior sorting genetic algorithm is used to complete the optimization iterative calculation, and the design parameters of deployable mechanisms with high structural stiffness and lightweight are obtained. Under the same conditions, the harmonic average natural frequency is increased by 67.4%, and the overall quality of the antenna is reduced by 35.2% after optimization.

     

  • loading
  • [1]
    陈传志, 董家宇, 陈金宝, 等. 空间大型星载抛物面天线研究进展[J]. 航空学报, 2021, 42(1): 523833.

    CHEN C Z, DONG J Y, CHEN J B, et al. Large spaceborne parabolic antenna researchp progress[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523833(in Chinese).
    [2]
    NATORI M C, HIRABAYASHI H, OKUIZUMI N, et al. A structure concept of high precision mesh antenna for space VLBI observation[C]// 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002: 1359-1362.
    [3]
    YONEZAWA K, HOMMA M. Attitude control on ETS-8 mobile communication satellite with large deployable antennas[C]//21st International Communications Satellite Systems Conference and Exhibit. Reston: AIAA, 2003: 1-5.
    [4]
    ONODA J, FU D Y, MINESUGI K. Two-dimensional deployable hexapod truss[J]. Journal of Spacecraft and Rockets, 1996, 33(3): 416-421. doi: 10.2514/3.26776
    [5]
    GUO J W, ZHAO Y S, XU Y D, et al. Design and analysis of truss deployable antenna mechanism based on a novel symmetric hexagonal profile division method[J]. Chinese Journal of Aeronautics, 2021, 34(8): 87-100. doi: 10.1016/j.cja.2020.06.004
    [6]
    XU Y D, CHEN L L, LIU W L, et al. Type synthesis of the deployable mechanisms for the truss antenna using the method of adding constraint chains[J]. Journal of Mechanisms and Robotics, 2018, 10(4): 041002. doi: 10.1115/1.4039341
    [7]
    刘兆晶. 模块化可展开抛物面天线支撑机构设计与研制[D]. 哈尔滨: 哈尔滨工业大学, 2011: 12-13.

    LIU Z J. Design and development of modular deployable parabolic antenna support mechanism[D]. Harbin: Harbin Institute of Technology, 2011: 12-13 (in Chinese).
    [8]
    陈向阳, 关富玲. 六棱柱单元可展抛物面天线结构设计[J]. 宇航学报, 2001, 22(1): 75-78.

    CHEN X Y, GUAN F L. A large deployable hexapod paraboloid antenna[J]. Journal of Astronautics, 2001, 22(1): 75-78(in Chinese).
    [9]
    岳建如, 关富玲, 陈向阳. 大型可展构架式星载抛物面天线结构设计[J]. 浙江大学学报, 2001, 35(3): 238-243.

    YUE J R, GUAN F L, CHEN X Y. A large deployable hexapod paraboloid antenna[J]. Journal of Zhejiang University, 2001, 35(3): 238-243(in Chinese).
    [10]
    HU F, SONG Y P, HUANG Z R, et al. Malleability and optimization of tetrahedral metamorphic element for deployable truss antenna reflector[J]. AIP Advances, 2018, 8(5): 055217. doi: 10.1063/1.5019828
    [11]
    HU F, SONG Y P, XU Y D, et al. Synthesis and optimization of modular deployable truss antenna reflector[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(8): 1288-1294. doi: 10.1108/AEAT-11-2017-0234
    [12]
    崔吉. 大尺度可展开式抛物面天线机构的设计与展开性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2012: 9-11.

    CUI J. Design and unfolding performance analysis of largescale deployable parabolic antenna mechanism[D]. Harbin: Harbin Institute of Technology, 2012: 9-11(in Chinese).
    [13]
    余丹敏. 大口径可展抛物面天线支撑桁架结构优化设计及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 16-24.

    YU D M. Structural optimization design and performance study of support truss for large-aperture deployable paraboloid antenna[D]. Harbin: Harbin Institute of Technology, 2020: 16-24(in Chinese).
    [14]
    田大可, 郭宏伟, 邓宗全, 等. 多模块构架式空间可展开天线结构参数优化[J]. 华中科技大学学报(自然科学版), 2012, 40(3): 49-53.

    TIAN D K, GUO H W, DENG Z Q, et al. Optimization of structural parameters for space deployable truss antenna with multi-module[J]. Journal of Huazhong University of Science and Technology (Nature Science), 2012, 40(3): 49-53(in Chinese).
    [15]
    史创. 基于四棱柱可展单元的索杆张拉式天线机构研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 14-39.

    SHI C. Research on cable-strut tension antenna mechanism based on quadrangular prism deployable element[D]. Harbin: Harbin Institute of Technology, 2019: 14-39 (in Chinese).
    [16]
    王辉, 何天宇, 都显琛, 等. 单元构架式抛物面天线张紧绳索多层设计方法[J]. 北京航空航天大学学报, 2022, 48(4): 657-664.

    WANG H, HE T Y, DU X C, et al. Multi-layer design method of tension rope for paraboloid antenna[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 657-664(in Chinese).
    [17]
    刘荣强, 田大可, 邓宗全, 等. 多模块构架式空间可展开天线背架的模态分析[J]. 北京理工大学学报, 2011, 31(6): 685-690.

    LIU R Q, TIAN D K, DENG Z Q, et al. Modal analysis of truss structure for deployable truss antenna with multi-module[J]. Transactions of Beijing Institute of Technology, 2011, 31(6): 685-690(in Chinese).
    [18]
    MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1-4): 259-280. doi: 10.1016/0045-7825(94)00714-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article Metrics

    Article views(160) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return