Volume 49 Issue 9
Oct.  2023
Turn off MathJax
Article Contents
DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0665
Citation: DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0665

An iterative pedestrian detection method sensitive to historical information features

doi: 10.13700/j.bh.1001-5965.2021.0665
Funds:  National Key R&D Program of China (2017YFC0821603); Natural Science Foundation of Shanghai (19ZR1421500)
More Information
  • Corresponding author: E-mail:xliu@sues.edu.cn
  • Received Date: 05 Nov 2021
  • Accepted Date: 27 Jan 2022
  • Publish Date: 15 Feb 2022
  • Object detection algorithms based on deep learning usually need to use post-processing methods such as non-maximum suppression to filter the prediction box, and can not balance the detection accuracy and recall rate of the model in the crowded pedestrian scene. Although the iterative detection method can solve the problems caused by non-maximum suppression methods, repeated detection will also limit the performance of the model. In this paper, a pedestrian iterative detection method sensitive to historical information features is proposed. Firstly, the weighted historical information characteristics (WHIC) is introduced to improve the feature discrimination. Second, the historical information feature extraction module (HIFEM) suggested in this paper is utilized to obtain and fuse historical information features of various scales into the main network for multi-scale detection, increasing the sensitivity of the model to the historical information features. This method can effectively suppress the generation of repeated detection frames. Experimental results show that the proposed method achieves the best detection accuracy and recall on CrowdHuman and WiderPerson.

     

  • loading
  • [1]
    邱博, 刘翔, 石蕴玉, 等. 一种轻量化的多目标实时检测模型[J]. 北京航空航天大学学报, 2020, 46(9): 1778-1785. doi: 10.13700/j.bh.1001-5965.2020.0066

    QIU B, LIU X, SHI Y Y, et al. A lightweight multi-target real-time detection model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1778-1785(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0066
    [2]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [3]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [4]
    GIRSHICK R. Fast R-CNN [C]//IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2016: 1440-1448.
    [5]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [6]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [7]
    REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [8]
    REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2021-06-06], https://arxiv.org/abs/1804.02767.
    [9]
    BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2021-06-06]. https://arxiv.org/abs/2004.10934.
    [10]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [11]
    LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3): 642-656. doi: 10.1007/s11263-019-01204-1
    [12]
    ZHOU X Y, ZHUO J C, KRÄHENBÜHL P. Bottom-up object detection by grouping extreme and center points[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 850-859.
    [13]
    TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]//IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2020: 9626-9635.
    [14]
    ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 9756-9765.
    [15]
    罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239. doi: 10.3969/j.issn.0372-2112.2020.06.026

    LUO H L, CHEN H K. Survey of object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(6): 1230-1239(in Chinese). doi: 10.3969/j.issn.0372-2112.2020.06.026
    [16]
    GE Z, JIE Z, HUANG X, et al. PS-RCNN: Detecting secondary human instances in a crowd via primary object suppression [EB/OL]. (2020-03-16) [2021-06-06]. http://arxiv.org/abs/2003.07080.
    [17]
    RUKHOVICH D, SOFIIUK K, GALEEV D, et al. IterDet: Iterative scheme for object detection in crowded environments[C]//Structural, Syntactic, and Statistical Pattern Recognition. Beilin: Springer, 2021: 344-354.
    [18]
    王海, 王宽, 蔡英凤, 等. 基于改进级联卷积神经网络的交通标志识别[J]. 汽车工程, 2020, 42(9): 1256-1262. doi: 10.19562/j.chinasae.qcgc.2020.09.016

    WANG H, WANG K, CAI Y F, et al. Traffic sign recognition based on improved cascade convolution neural network[J]. Automotive Engineering, 2020, 42(9): 1256-1262(in Chinese). doi: 10.19562/j.chinasae.qcgc.2020.09.016
    [19]
    郑浦, 白宏阳, 李伟, 等. 复杂背景下的小目标检测算法[J]. 浙江大学学报(工学版), 2020, 54(9): 1777-1784. doi: 10.3785/j.issn.1008-973X.2020.09.014

    ZHENG P, BAI H Y, LI W, et al. Small target detection algorithm in complex background[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1777-1784(in Chinese). doi: 10.3785/j.issn.1008-973X.2020.09.014
    [20]
    马立, 巩笑天, 欧阳航空. Tiny YOLOV3目标检测改进[J]. 光学精密工程, 2020, 28(4): 988-995.

    MA L, GONG X T, OUYANG H K. Improvement of Tiny YOLOV3 target detection[J]. Optics and Precision Engineering, 2020, 28(4): 988-995(in Chinese).
    [21]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
    [22]
    LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
    [23]
    PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: Towards balanced learning for object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 821-830.
    [24]
    SHAO S, ZHAO Z J, LI B X, et al. CrowdHuman: A benchmark for detecting human in a crowd[EB/OL]. (2018-04-30)[2021-06-06]. https://arxiv.org/abs/1805.00123.
    [25]
    ZHANG S F, XIE Y L, WAN J, et al. WiderPerson: A diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2020, 22(2): 380-393. doi: 10.1109/TMM.2019.2929005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(9)

    Article Metrics

    Article views(1733) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return