Volume 49 Issue 9
Oct.  2023
Turn off MathJax
Article Contents
WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0681
Citation: WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0681

Attitude control law based on L1-ITD for a tail-sitter UAV

doi: 10.13700/j.bh.1001-5965.2021.0681
More Information
  • Corresponding author: E-mail:zhangjing2013@buaa.edu.cn
  • Received Date: 11 Nov 2021
  • Accepted Date: 21 Jan 2022
  • Publish Date: 16 Feb 2022
  • Aiming at the problem that the tail-sitter UAV is sensitive to wind disturbance in the vertical take-off and landing (VTOL) stage, an attitude control law based on L1-ITD is proposed. Firstly, a 6-DOF nonlinear model of a tail-sitter UAV in VTOL stage is established, and an L1 adaptive attitude controller for the UAV is designed. The controller can suppress the influence of disturbance on system performance and achieve good attitude control performance with wind disturbance and model uncertainty in VTOL stage. Then, aiming at the problem that L1 adaptive control method is sensitive to measurement noise and cannot directly obtain effective differential signal, an improved tracking differentiator is used to track the signal quickly and accurately while suppressing the influence of measurement noise. Finally, the simulation results demonstrate the effectiveness of the proposed control method.

     

  • loading
  • [1]
    刘玉焘. 尾座式无人机的飞行控制器设计[D]. 哈尔滨: 哈尔滨工业大学, 2014: 1-33.

    LIU Y T. Design of flight controller for a tail-sitter UAV[D]. Harbin: Harbin Institute of Technology, 2014: 1-33(in Chinese).
    [2]
    王刚强. 大气扰动下无人直升机悬停/小速度段位置控制律设计[D]. 南京: 南京航空航天大学, 2013: 1-3.

    WANG G Q. Research on position control technology of the unmanned helicopter in hover and low speed state with atmospheric disturbance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-3(in Chinese).
    [3]
    王正熙, 陈洋, 郑秀娟, 等. 风扰下基于气动参数估计的四旋翼无人机控制[J]. 信息与控制, 2018, 47(6): 663-670. doi: 10.13976/j.cnki.xk.2018.7490

    WANG Z X, CHEN Y, ZHENG X J, et al. Quadrotor UAV control with disturbance based on aerodynamic parameter estimation[J]. Information and Control, 2018, 47(6): 663-670(in Chinese). doi: 10.13976/j.cnki.xk.2018.7490
    [4]
    KIM M, KIM Y. Error dynamics-based guidance law of UAVs for target observation under wind disturbance: AIAA 2012-2593[R]. Reston: AIAA, 2012.
    [5]
    WASLANDER S, WANG C. Wind disturbance estimation and rejection for quadrotor position control: AIAA 2009-1983[R]. Reston: AIAA, 2009.
    [6]
    WANG Y N, YU J L, LI Q D, et al. Control strategy for the transition flight of a tail-sitter UAV[C]//2017 Chinese Control Conference. Piscataway: IEEE Press, 2017: 3504-3509.
    [7]
    韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23. doi: 10.3321/j.issn:1001-0920.1998.01.005

    HAN J Q. Auto-disturbances-rejection controller and it’s applications[J]. Control and Decision, 1998, 13(1): 19-23(in Chinese). doi: 10.3321/j.issn:1001-0920.1998.01.005
    [8]
    WANG Q Q, XIONG H J, QIU B. The attitude control of transmission line fault inspection UAV based on ADRC[C]//2017 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration. Piscataway: IEEE Press, 2018: 186-189.
    [9]
    ZHU G J, QI J T, WU C. Landing control of fixed-wing UAV based on ADRC[C]//2019 Chinese Control Conference. Piscataway: IEEE Press, 2019: 8020-8025.
    [10]
    LEE D, AWAN A, KIM S, et al. Adaptive control for a VTOL UAV operating near a wall: AIAA 2012-4835[R]. Reston: AIAA, 2012.
    [11]
    LIAN S K, MENG W, LIN Z M, et al. Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1597-1607. doi: 10.1109/TIE.2021.3057015
    [12]
    CAO C Y, HOVAKIMYAN N. Guaranteed transient performance with L1 adaptive controller for systems with unknown time-varying parameters and bounded disturbances: Part I[C]//2007 American Control Conference. Piscataway: IEEE Press, 2007: 3925-3930.
    [13]
    LUO J, CAO C, HOVAKIMYAN N. L1 adaptive controller for a class of systems with unknown nonlinearities[C]//2010 American Control Conference. Piscataway: IEEE Press, 2010: 1659-1664.
    [14]
    CAO C, HOVAKIMYAN N. L1 adaptive controller for nonlinear systems in the presence of unmodelled dynamics: Part II[C]//2008 American Control Conference. Piscataway: IEEE Press, 2008: 4099-4104.
    [15]
    秦奇. 飞行器纵向轨迹的L1自适应控制[D]. 北京: 北京理工大学, 2015: 1-39.

    QIN Q. L1 adaptive control for aircraft longitudinal trajectory[D]. Beijing: Beijing Institute of Technology, 2015: 1-39(in Chinese).
    [16]
    陈海, 何开锋, 钱炜祺. 基于非线性L1自适应动态逆的飞行器姿态角控制[J]. 控制理论与应用, 2016, 33(8): 1111-1118. doi: 10.7641/CTA.2016.51007

    CHEN H, HE K F, QIAN W Q. Attitude control of flight vehicle based on a nonlinear L1 adaptive dynamic inversion approach[J]. Control Theory & Applications, 2016, 33(8): 1111-1118(in Chinese). doi: 10.7641/CTA.2016.51007
    [17]
    ZHONG J Y, SONG B F, LI Y B, et al. L1 adaptive control of a dual-rotor tail-sitter unmanned aerial vehicle with input constraints during hover flight[J]. IEEE Access, 2019, 7: 51312-51328. doi: 10.1109/ACCESS.2019.2911897
    [18]
    甄红涛, 齐晓慧, 李杰, 等. 四旋翼无人机L1自适应块控反步姿态控制器设计[J]. 控制与决策, 2014, 29(6): 1076-1082.

    ZHEN H T, QI X H, LI J, et al. Quadrotor UAV L1 adaptive block backstepping attitude controller[J]. Control and Decision, 2014, 29(6): 1076-1082(in Chinese).
    [19]
    韩京清, 王伟. 非线性跟踪-微分器[J]. 系统科学与数学, 1994, 14(2): 177-183.

    HAN J Q, WANG W. Nonlinear tracking-differentiator[J]. Journal of Systems Science and Mathematical Sciences, 1994, 14(2): 177-183(in Chinese).
    [20]
    史永丽, 侯朝桢. 改进的非线性跟踪微分器设计[J]. 控制与决策, 2008, 23(6): 647-650. doi: 10.13195/j.cd.2008.06.49.shiyl.005

    SHI Y L, HOU C Z. Design of improved nonlinear tracking differentiator[J]. Control and Decision, 2008, 23(6): 647-650(in Chinese). doi: 10.13195/j.cd.2008.06.49.shiyl.005
    [21]
    刘延泉, 郭佳颖. 双曲正切跟踪微分器设计及相平面分析[J]. 电力科学与工程, 2017, 33(10): 74-78. doi: 10.3969/j.ISSN.1672-0792.2017.10.013

    LIU Y Q, GUO J Y. Design and phase plane analysis of a hyperbolic tangent tracking differentiator[J]. Electric Power Science and Engineering, 2017, 33(10): 74-78(in Chinese). doi: 10.3969/j.ISSN.1672-0792.2017.10.013
    [22]
    王新华, 陈增强, 袁著祉. 全程快速非线性跟踪-微分器[J]. 控制理论与应用, 2003, 20(6): 875-878.

    WANG X H, CHEN Z Q, YUAN Z Z. Nonlinear tracking-differentiator with high speed in whole course[J]. Control Theory & Applications, 2003, 20(6): 875-878(in Chinese).
    [23]
    刘海亭. 基于滑模变结构控制的机械臂轨迹跟踪[D]. 天津: 天津大学, 2018.

    LIU H T. Trajectory tracking of robotic manipulators based on sliding mode variable structure control[D]. Tianjin: Tianjing University, 2018(in Chinese).
    [24]
    KE Y J, WANG K L, CHEN B M. Design and implementation of a hybrid UAV with model-based flight capabilities[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3): 1114-1125. doi: 10.1109/TMECH.2018.2820222
    [25]
    LIU X X, LI Y, YUAN M Q, et al. Gust alleviation controller for elastic aircraft based on L1 adaptive control[C]//2017 Chinese Automation Congress. Piscataway: IEEE Press, 2018: 5382-5385.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(1366) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return