Volume 49 Issue 9
Oct.  2023
Turn off MathJax
Article Contents
XING L,QUAN W,SONG T X,et al. Error analysis and suppression of probe system for SERF atomic spin co-magnetometer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2345-2350 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0691
Citation: XING L,QUAN W,SONG T X,et al. Error analysis and suppression of probe system for SERF atomic spin co-magnetometer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2345-2350 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0691

Error analysis and suppression of probe system for SERF atomic spin co-magnetometer

doi: 10.13700/j.bh.1001-5965.2021.0691
Funds:  National Natural Science Foundation of China (61803015);China Postdoctoral Science Foundation (2021M703049)
More Information
  • Corresponding author: E-mail:qingzhong_cai@buaa.edu.cn
  • Received Date: 16 Nov 2021
  • Accepted Date: 27 Dec 2021
  • Publish Date: 15 Feb 2022
  • The performance of the probe system is the key factor to determine the sensitivity and stability limit of the spin-exchange relaxation-free (SERF) atomic spin co-magnetometer for inertial measurement. In order to suppress the low-frequency random noise in SERF auto spin co-magnetometer, the error mechanism model for the probe system is established based on the steady-state solution of transverse electron spin polarization and optical rotation angle. The main factors affecting the output signal of the probe system are clarified. According to model analysis, the initial probe light intensity incident on the vapor cell as the signal background directly causes the fluctuation of the scale coefficient rather than the electron spins. In addition, the non-ideal linear polarization of probe light affects the electron spins in a transverse pumping manner and causes a light shift, both of which can cause measurement error. Aiming at the main parameters affecting the noise, the optimization path has been proposed. The probe light frequency has been first optimized to increase the scale coefficient of inertial measurement. Then the transverse pumping rate, light shift, and background fluctuation have been reduced by optimizing the probe light intensity. According to the analysis of Allan variance, the bias instability of SERF auto spin co-magnetometer is suppressed by 1.8 times, and the coefficients of rate ramp are reduced from 0.124 (º)/h2 to 0.041 (º)/h2. Therefore, the effect of reducing the low-frequency random noise in the output signal is achieved.

     

  • loading
  • [1]
    郭雷, 房建成. 导航制导与传感技术研究领域若干问题的思考与展望[J]. 中国科学:信息科学, 2017, 47(9): 1198-1208. doi: 10.1360/N112016-00275

    GUO L, FANG J C. Recent prospects on some problems of navigation guidance and sensing technology[J]. Scientia Sinica (Informationis), 2017, 47(9): 1198-1208(in Chinese). doi: 10.1360/N112016-00275
    [2]
    薛连莉, 陈少春, 陈效真. 2017年国外惯性技术发展与回顾[J]. 导航与控制, 2018, 17(2): 1-9.

    XUE L L, CHEN S C, CHEN X Z. Development and review of foreign inertial technology in 2017[J]. Navigation and Control, 2018, 17(2): 1-9(in Chinese).
    [3]
    HU Z X, GALLACHER B J. Effects of nonlinearity on the angular drift error of an electrostatic MEMS rate integrating gyroscope[J]. IEEE Sensors Journal, 2019, 19(22): 10271-10280. doi: 10.1109/JSEN.2019.2929352
    [4]
    LEFÈVRE H C. The fiber-optic gyroscope[M]. Boston: Artech House, 1993.
    [5]
    LEE B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 9(2): 57-79. doi: 10.1016/S1068-5200(02)00527-8
    [6]
    KETTERLE W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser[J]. Reviews of Modern Physics, 2002, 74(4): 1131-1151. doi: 10.1103/RevModPhys.74.1131
    [7]
    CHU S. Cold atoms and quantum control[J]. Nature, 2002, 416(6877): 206-210. doi: 10.1038/416206a
    [8]
    GUSTAVSON T L, BOUYER P, KASEVICH M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11): 2046-2049. doi: 10.1103/PhysRevLett.78.2046
    [9]
    WOODMAN K F, FRANKS P W, RICHARDS M D. The nuclear magnetic resonance gyroscope: A review[J]. Journal of Navigation, 1987, 40(3): 366-384. doi: 10.1017/S037346330000062X
    [10]
    KORNACK T W, GHOSH R K, ROMALIS M V. Nuclear spin gyroscope based on an atomic comagnetometer[J]. Physical Review Letters, 2005, 95(23): 230801. doi: 10.1103/PhysRevLett.95.230801
    [11]
    ALLRED J C, LYMAN R N, KORNACK T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801. doi: 10.1103/PhysRevLett.89.130801
    [12]
    SMICIKLAS M A, BROWN J M, CHEUK L W, et al. New test of local Lorentz invariance using a 21Ne-Rb-K Comagnetometer[J]. Physical Review Letters, 2011, 107(17): 171604. doi: 10.1103/PhysRevLett.107.171604
    [13]
    SMICIKLAS M A, ROMALIS M V. Test of Lorentz invariance with Rb-21Ne co-magnetometer at the south pole[C]//Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry. Bloomington: World Scientific Publishing House, 2014: 95-98.
    [14]
    ROMALIS M V, KORNACK T. Chip-scale combinatorial atomic navigator (C-SCAN) low drift nuclear spin gyroscope: 125560431[R]. Princeton: Princeton University, 2018.
    [15]
    LIMES M E, SHENG D, ROMALIS M V. 3He-129Xe comagnetometery using 87Rb detection and decoupling[J]. Physical Review Letters, 2018, 120(3): 033401. doi: 10.1103/PhysRevLett.120.033401
    [16]
    BUDKER D, GAWLIK W, KIMBALL D F, et al. Resonant nonlinear magneto-optical effects in atoms[J]. Reviews of Modern Physics, 2002, 74(4): 1153-1201. doi: 10.1103/RevModPhys.74.1153
    [17]
    XING L, ZHAI Y Y, FAN W F, et al. Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope[J]. Optics Express, 2019, 27(26): 38061. doi: 10.1364/OE.27.038061
    [18]
    VASILAKIS G. Precision measurements of spin interactions with high density atomic vapors[D]. Princeton: Princeton University, 2011.
    [19]
    CHOUDHURI A R. Classical electrodynamics[J]. Current Science, 2015, 109(3): 632-633.
    [20]
    KORNACK T W. A test of CPT and Lorentz symmetry using a K-3He co-magnetometer[D]. Princeton: Princeton University, 2005.
    [21]
    张桂才. 光纤陀螺原理与技术[M]. 北京: 国防工业出版社, 2008.

    ZHANG G C. The principles and technologies of fiber-optic gyroscope[M]. Beijing: National Defense Industry Press, 2008 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(534) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return