Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZHANG Yuan, HUANG Wanwei, LU Kunfeng, et al. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993. doi: 10.13700/j.bh.1001-5965.2021.0701(in Chinese)
Citation: ZHANG Yuan, HUANG Wanwei, LU Kunfeng, et al. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993. doi: 10.13700/j.bh.1001-5965.2021.0701(in Chinese)

Modeling and finite-time control for hypersonic morphing flight vehicle

doi: 10.13700/j.bh.1001-5965.2021.0701
Funds:

National Natural Science Foundation of China 61803357

National Natural Science Foundation of China 61773341

More Information
  • Corresponding author: HUANG Wanwei, E-mail: yuanbuaa@buaa.edu.cn
  • Received Date: 19 Nov 2021
  • Accepted Date: 04 Mar 2022
  • Publish Date: 09 Mar 2022
  • The attitude control of hypersonic morphing flight vehicles cause problems of large uncertainties, such as time-varying parameter perturbation, difficulty in modeling deformation process, and complex "lumped disturbances". To address these problems, a control-oriented model for variable-sweep wing hypersonic flight vehicles is established, and a finite-time control scheme is proposed. Firstly, a three-degree-of-freedom model is established for attitude control, which can reflect the influence caused by deformation. Secondly, the aerodynamic characteristics of the hypersonic morphing flight vehicle in some typical states are analyzed, and a feasible method for the key aerodynamic data of continuous deformation is developed. Thirdly, a finite-time control scheme is designed for the continuously deformable vehicle, and the system stability is demonstrated. Further, the finite-time convergence filter is designed, considering the command differentiation term used in the control law. An extended state observer is also used to estimate the unmeasurable states and the "lumped disturbances". Finally, numerical simulations are performed with complex disturbances, and the results show that the proposed control scheme can solve the attitude control problem for the vehicle with complex disturbances at different deformation rates.

     

  • loading
  • [1]
    路遥, 刘晓东, 路坤锋. 一种非仿射高超声速飞行器姿态系统控制方法[J]. 宇航学报, 2021, 42(1): 132-140. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202101015.htm

    LU Y, LIU X D, LU K F. An attitude control method for non-affine hypersonic flight vehicles[J]. Journal of Astronautics, 2021, 42(1): 132-140(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202101015.htm
    [2]
    方洋旺, 柴栋, 毛东辉. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7): 1776-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201407003.htm

    FANG Y W, CHAI D, MAO D H. Status and development trend of the guidance and control air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1776-1786(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201407003.htm
    [3]
    RAFIC M A, CHRISTOPHER S B, MICHAEL F. Morphing aircraft: The need for a new design philosophy[J]. Aerospace Science and Technology, 2016, 49: 154-166. doi: 10.1016/j.ast.2015.11.039
    [4]
    GONG L G, WANG Q, HU C H. Switching control of morphing aircraft based on Q-learning[J]. Chinese Journal of Aeronautics, 2020, 33(2): 672-687. doi: 10.1016/j.cja.2019.10.005
    [5]
    CHEN X Y, LI C N, GONG C L. A study of morphing aircraft on morphing rules along trajectory[J]. Chinese Journal of Aeronautics, 2021, 34(7): 232-243. doi: 10.1016/j.cja.2020.04.032
    [6]
    YAN B B, DAI P, LIU R F. Adaptive super-twisting sliding mode control of variable sweep morphing aircraft[J]. Aerospace Science and Technology, 2019, 92: 198-210. doi: 10.1016/j.ast.2019.05.063
    [7]
    董朝阳, 江未来, 王青. 变翼展飞行器平滑切换LPV鲁棒H控制[J]. 宇航学报, 2015, 36(11): 1270-1278. doi: 10.3873/j.issn.1000-1328.2015.11.008

    DONG C Y, JIANG W L, WANG Q. Smooth switching LPV robust H control for variable span vehicle[J]. Journal of Astronautics, 2015, 36(11): 1270-1278(in Chinese). doi: 10.3873/j.issn.1000-1328.2015.11.008
    [8]
    江未来, 董朝阳, 王通. 变体飞行器平滑切换LPV鲁棒控制[J]. 控制与决策, 2016, 31(1): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201601009.htm

    JIANG W L, DONG C Y, WANG T. Smooth switching LPV robust control for morphing aircraft[J]. Control and Decision, 2016, 31(1): 66-72(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201601009.htm
    [9]
    JIANG W L, DONG C Y, WANG Q. A systematic method of smooth switching LPV controllers design for a morphing aircraft[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1640-1649. doi: 10.1016/j.cja.2015.10.005
    [10]
    程昊宇, 董朝阳, 王青. 变体飞行器的非脆弱有限时间鲁棒控制器设计[J]. 控制与决策, 2017, 32(11): 1932-1939. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201711002.htm

    CHENG H Y, DONG C Y, WANG Q. Non-fragile finite-time robust controller design for morphing aircraft[J]. Control and Decision, 2017, 32(11): 1932-1939(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201711002.htm
    [11]
    贾臻, 董朝阳, 王青. 链式平滑切换变体飞行器LPV鲁棒跟踪控制[J]. 北京航空航天大学学报, 2017, 43(4): 831-842. doi: 10.13700/j.bh.1001-5965.2016.0246

    JIA Z, DONG C Y, WANG Q. LPV robust tracking control for chain smooth switched morphing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 831-842(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0246
    [12]
    梁帅, 杨林, 杨朝旭. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报, 2020, 41(2): 724274. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2020S2007.htm

    LIANG S, YANG L, YANG Z X. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 724274(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2020S2007.htm
    [13]
    马文风. 高超声速变形飞行器建模与纵向鲁棒控制方法研究[D]. 长沙: 国防科技大学, 2017: 45-60.

    MA W F. Research on modeling and longitudinal robust control methods for hypersonic morphing aircrafts[D]. Changsha: National University of Defense Technology, 2017: 45-60(in Chinese).
    [14]
    WU Z H, LU J C, ZHOU Q. Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints[J]. Nonlinear Dynamics, 2017, 87(4): 2367-2383. doi: 10.1007/s11071-016-3196-0
    [15]
    JIAO X, FIDAN B, JIANG J. Adaptive mode switching of hypersonic morphing aircraft based on type-2 TSK fuzzy sliding mode control[J]. Science China: Information Science, 2015, 58(7): 1-15.
    [16]
    WU Z H, LU J C, RAJPUT J. Adaptive neural control based on high order integral chained differentiator for morphing aircraft[J]. Mathematical Problems in Engineering, 2015, 10: 1-12.
    [17]
    储培, 倪昆, 程林. 基于反步滑模的高超声速变体飞行器鲁棒控制[J]. 计算机仿真, 2018, 35(8): 41-45. doi: 10.3969/j.issn.1006-9348.2018.08.009

    CHU P, NI K, CHENG L. Robust control of hypersonic morphing vehicle based on backstepping sliding mode control[J]. Journal of Computer Simulation, 2018, 35(8): 41-45(in Chinese). doi: 10.3969/j.issn.1006-9348.2018.08.009
    [18]
    DONG C Y, LIU C, WANG Q. Switched adaptive active distur-bance rejection control of variable structure near space vehicles based on adaptive dynamic programming[J]. Chinese Journal of Aeronautics, 2019, 32(7): 1684-1694. doi: 10.1016/j.cja.2019.03.009
    [19]
    JIANG B Y, HU Q L, FRISWELL M I. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1892-1898. doi: 10.1109/TCST.2016.2519838
    [20]
    SHI X N, ZHANG Y A, ZHOU D. Global fixed-time attitude tracking control for the rigid spacecraft with actuator saturation and faults[J]. Acta Astronautica, 2019, 155: 325-333. doi: 10.1016/j.actaastro.2018.11.026
    [21]
    李新凯, 张宏立, 范文慧. 基于时变障碍李雅普诺夫函数的变体无人机有限时间控制[J]. 自动化学报, 2022, 48(8): 2062-2074. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202208016.htm

    LI X K, ZHANG H L, FAN W H. Finite-time control for morphing aerospace vehicle based on time-varying barrier Lyapunov function[J]. Acta Automatica Sinica, 2022, 48(8): 2062-2074(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202208016.htm
    [22]
    WANG P, TANG G J, LIU L H. Nonlinear hierarchy-structured predictive control design for a generic hypersonic vehicle[J]. Science China: Technological Sciences, 2013, 56(8): 2025-2036. doi: 10.1007/s11431-013-5273-7
    [23]
    POLYAKOV A, FRIDMAN L. Stability notions and Lyapunov functions for sliding mode control systems[J]. Journal of the Franklin Institute, 2014, 351(4): 1831-1865. doi: 10.1016/j.jfranklin.2014.01.002
    [24]
    WANG X, GUO J, TANG S J. Fixed-time disturbance observer based fixed-time backsteping control for an air-breathing hypersonic vehicle[J]. ISA Transactions, 2019, 88: 233-245. doi: 10.1016/j.isatra.2018.12.013
    [25]
    SHEN Y, HUANG Y. Global finite-time stabilisation for a class of nonlinear systems[J]. International Journal of Systems Science, 2012, 43(1): 73-78. doi: 10.1080/00207721003770569
    [26]
    丁一波, 岳晓奎, 代洪华. 考虑进气约束的高超声速飞行器预定性能控制[J]. 航空学报, 2021, 42(11): 177-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202111012.htm

    DING Y B, YUE X K, DAI H H. Prescribed performance controller for flexible air-breathing hypersonic vehicle with inlet unstart constraint[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 177-194(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202111012.htm
    [27]
    ZHANG Y DONG X W, LI Q D, et al. Robust adaptive control for hypersonic gliding vehicles based on NESO[C]// Procee-dings of 13th IEEE International Conference on Control and Automation. Piscataway: IEEE Press, 2017: 431-437.
    [28]
    谭诗利, 雷虎民, 王鹏飞. 基于正切Sigmoid函数的跟踪微分器[J]. 系统工程与电子技术, 2019, 41(7): 1590-1596. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201907021.htm

    TAN S L, LEI H M, WANG P F. Design of tracking differentiator based on tangent Sigmoid function[J]. Systems Engineering and Electronics, 2019, 41(7): 1590-1596(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201907021.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(5)

    Article Metrics

    Article views(605) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return