Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
NIU G C,WANG Y Y,TIAN Y B. LiDAR obstacle detection based on improved density clustering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2608-2616 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0733
Citation: NIU G C,WANG Y Y,TIAN Y B. LiDAR obstacle detection based on improved density clustering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2608-2616 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0733

LiDAR obstacle detection based on improved density clustering

doi: 10.13700/j.bh.1001-5965.2021.0733
Funds:  Tianjin Science and Technology Plan (17ZXHLGX00120)
More Information
  • Corresponding author: E-mail:niu_guochen@139.com
  • Received Date: 06 Dec 2021
  • Accepted Date: 17 Jan 2022
  • Available Online: 31 Oct 2023
  • Publish Date: 15 Feb 2022
  • For the 3D point cloud collected by the LiDAR on the intelligent vehicle in the park environment, there exist some problems, for example, the obstacles far away from the LiDAR are easily missed, adjacent obstacles are prone to incompletely or excessively differentiate, and the algorithm is time-consuming. To solve these problems, the improved density-based spatial clustering of applications with noise (DBSCAN) algorithm is proposed by adaptively changing the clustering radius based on laser beams that are distributed differently in the horizontal and vertical directions. It is also suggested to combine the upgraded k-means algorithm with the concept of group clustering to create a quick and accurate obstacle identification technique. Firstly, the 3D point clouds in the region of interest (ROI) are preliminarily grouped by using the improved k-means algorithm according to 3D point clouds density characteristics. Then, the point clouds in each group are clustered in parallel using the parameter adaptive DBSCAN algorithm. Finally, the clusters on the qualified group boundary are merged to complete the obstacle detection. The experimental findings indicate that when compared to the conventional approaches, the suggested method’s true positive rate of obstacle detection is enhanced by 17.5%, and the average time consumption is decreased by 23.6%.

     

  • loading
  • [1]
    WEN L H, JO K H. Three-attention mechanisms for one-stage 3D object detection based on LiDAR and camera[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6655-6663. doi: 10.1109/TII.2020.3048719
    [2]
    LEE H, MOTES J, MORALES M, et al. Parallel hierarchical composition conflict-based search for optimal multi-agent pathfinding[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7001-7008. doi: 10.1109/LRA.2021.3096476
    [3]
    WANG Z, ZHAO X M, CHEN Z W, et al. A dynamic cooperative lane-changing model for connected and autonomous vehicles with possible accelerations of a preceding vehicle[J]. Expert Systems with Applications, 2021, 173(2): 114675.
    [4]
    BARZEGAR A, DOUKHI O, LEE D J. Design and implementation of an autonomous electric vehicle for self-driving control under GNSS-denied environments[J]. Applied Sciences, 2021, 11(8): 3688. doi: 10.3390/app11083688
    [5]
    CHEN Y C, HUANG F Y, LIU B Q, et al. Significant obstacle location with ultra-wide FOV LWIR stereo vision system[J]. Optics and Lasers in Engineering, 2020, 129(2): 106076.
    [6]
    夏显召, 朱世贤, 周意遥, 等. 基于阈值的激光雷达K均值聚类算法[J]. 北京航空航天大学学报, 2020, 46(1): 115-121.

    XIA X Z, ZHU S X, ZHOU Y Y, et al. LiDAR K-means clustering algorithm based on threshold[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 115-121(in Chinese).
    [7]
    徐国艳, 牛欢, 郭宸阳, 等. 基于三维激光点云的目标识别与跟踪研究[J]. 汽车工程, 2020, 42(1): 38-46.

    XU G Y, NIU H, GUO C Y, et al. Research on target recognition and tracking based on 3D laser point cloud[J]. Automotive Engineering, 2020, 42(1): 38-46(in Chinese).
    [8]
    HE C, ZENG H, HUANG J, et al. Structure aware single-stage 3D object detection from point cloud[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 13-19.
    [9]
    ZHOU Y, TUZEL O. VoxelNet: End-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 18-23.
    [10]
    汪文琪, 李宗春, 付永健, 等. 基于改进多规则区域生长的点云多要素分割[J]. 光学学报, 2021, 41(5): 198-212.

    WANG W Q, LI Z C, FU Y J, et al. Multi-factor segmentation of point cloud based on improved multi-rule region growing[J]. Acta Optica Sinica, 2021, 41(5): 198-212(in Chinese).
    [11]
    宗长富, 文龙, 何磊. 基于欧几里得聚类算法的三维激光雷达障碍物检测技术[J]. 吉林大学学报(工学版), 2020, 50(1): 107-113.

    ZONG C F, WEN L, HE L. Object detection based on Euclidean clustering algorithm with 3D laser scanner[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 107-113(in Chinese).
    [12]
    郭烈, 马跃, 岳明, 等. 驾驶特性的识别评估及其在智能汽车上的应用综述[J]. 交通运输工程学报, 2021, 21(2): 7-20.

    GUO L, MA Y, YUE M, et al. Overview of recognition and evaluation of driving characteristics and their applications in intelligent vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 7-20(in Chinese).
    [13]
    戴阳阳, 李朝锋, 徐华. 初始点优化与参数自适应的密度聚类算法[J]. 计算机工程, 2016, 42(1): 203-209. doi: 10.3969/j.issn.1000-3428.2016.01.036

    DAI Y Y, LI C F, XU H. Density clustering algorithm with initial point optimization and parameter self-adaption[J]. Computer Engineering, 2016, 42(1): 203-209(in Chinese). doi: 10.3969/j.issn.1000-3428.2016.01.036
    [14]
    FENG L, LIU K, TANG F, et al. GO-DBSCAN: Improvements of DBSCAN algorithm based on grid[J]. International Journal of Computer Theory and Engineering, 2017, 9(3): 151-155. doi: 10.7763/IJCTE.2017.V9.1129
    [15]
    谢德胜, 徐友春, 王任栋, 等. 基于三维激光雷达的无人车障碍物检测与跟踪[J]. 汽车工程, 2018, 40(8): 952-959. doi: 10.19562/j.chinasae.qcgc.2018.08.013

    XIE D S, XU Y C, WANG R D, et al. Obstacle detection and tracking for unmanned vehicles based on 3D laser radar[J]. Automotive Engineering, 2018, 40(8): 952-959(in Chinese). doi: 10.19562/j.chinasae.qcgc.2018.08.013
    [16]
    BRYANT A, CIOS K. RNN-DBSCAN: A density-based clustering algorithm using reverse nearest neighbor density estimates[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6): 1109-1121. doi: 10.1109/TKDE.2017.2787640
    [17]
    蔡怀宇, 陈延真, 卓励然, 等. 基于优化DBSCAN算法的激光雷达障碍物检测[J]. 光电工程, 2019, 46(7): 83-90.

    CAI H Y, CHEN Y Z, ZHUO L R, et al. LiDAR object detection based on optimized DBSCAN algorithm[J]. Opto-Electronic Engineering, 2019, 46(7): 83-90(in Chinese).
    [18]
    WANG C X, JI M, WANG J, et al. An improved DBSCAN method for LiDAR data segmentation with automatic EPS estimation[J]. Sensors (Basel), 2019, 19: 172. doi: 10.3390/s19010172
    [19]
    汪世财, 谈东奎, 谢有浩, 等. 基于激光雷达点云密度特征的智能车障碍物检测与跟踪[J]. 合肥工业大学学报(自然科学版), 2019, 42(10): 1311-1317.

    WANG S C, TAN D K, XIE Y H, et al. Obstacle detection and tracking for intelligent vehicle based on density characteristics of point cloud using 3D lidar[J]. Journal of Hefei University of Technology: (Natural Science), 2019, 42(10): 1311-1317(in Chinese).
    [20]
    LI H, LIU X J, LI T, et al. A novel density-based clustering algorithm using nearest neighbor graph[J]. Pattern Recognition, 2020, 102(6): 107206.
    [21]
    ZERMAS D, IZZAT I, PAPANIKOLOPOULOS N. Fast segmentation of 3D point clouds: A paradigm on LiDAR data for autonomous vehicle applications[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2017: 5067-5073.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(2)

    Article Metrics

    Article views(306) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return